373 research outputs found

    On the singlet projector and the monodromy relation for psu(2, 2|4) spin chains and reduction to subsectors

    Full text link
    As a step toward uncovering the relation between the weak and the strong coupling regimes of the N=4\mathcal{N}=4 super Yang-Mills theory beyond the specral level, we have developed in a previous paper [arXiv:1410.8533] a novel group theoretic interpretation of the Wick contraction of the fields, which allowed us to compute a much more general class of three-point functions in the SU(2) sector, as in the case of strong coupling [arXiv:1312.3727], directly in terms of the determinant representation of the partial domain wall partition funciton. Furthermore, we derived a non-trivial identity for the three point functions with monodromy operators inserted, being the discrete counterpart of the global monodromy condition which played such a crucial role in the computation at strong coupling. In this companion paper, we shall extend our study to the entire psu(2,2∣4){\rm psu}(2,2|4) sector and obtain several important generalizations. They include in particular (i) the manifestly conformally covariant construction, from the basic principle, of the singlet-projection operator for performing the Wick contraction and (ii) the derivation of the monodromy relation for the case of the so-called "harmonic R-matrix", as well as for the usual fundamental R-matrtix. The former case, which is new and has features rather different from the latter, is expected to have important applications. We also describe how the form of the monodromy relation is modified as psu(2,2∣4){\rm psu}(2,2|4) is reduced to its subsectors.Comment: 49+10 pages;v3 Published version. Typos corrected. Explicit form of the monodromy relations for the three-point functions displaye

    Charmonium-nucleon interactions from the time-dependent HAL QCD method

    Full text link
    The charmonium-nucleon effective central interactions have been computed by the time-dependent HAL QCD method. This gives an updated result of a previous study based on the time-independent method, which is now known to be problematic because of the difficulty in achieving the ground-state saturation. We discuss that the result is consistent with the heavy quark symmetry. No bound state is observed from the analysis of the scattering phase shift; however, this shall lead to a future search of the hidden-charm pentaquarks by considering channel-coupling effects.Comment: 8 pages, 8 figure

    Lattice QCD Study of the Nucleon-Charmonium Interaction

    Full text link
    The J/ψJ/\psi-nucleon interaction is studied by lattice QCD calculations. At the leading order of the derivative expansion, the interaction consists of four terms: the central, the spin-spin, and two types of tensor forces. We determine these spin-dependent forces quantitatively by using the time-dependent HAL QCD method. We find that the spin-spin force is the main cause of the hyperfine splitting between the J=1/2J=1/2 and the J=3/2J=3/2 states, while the two tensor forces have much smaller effects on the S-wave scattering processes.Comment: 5 pages, 4 figure

    Novel construction and the monodromy relation for three-point functions at weak coupling

    Full text link
    In this article, we shall develop and formulate two novel viewpoints and properties concerning the three-point functions at weak coupling in the SU(2) sector of the N = 4 super Yang-Mills theory. One is a double spin-chain formulation of the spin-chain and the associated new interpretation of the operation of Wick contraction. It will be regarded as a skew symmetric pairing which acts as a projection onto a singlet in the entire SO(4) sector, instead of an inner product in the spin-chain Hilbert space. This formalism allows us to study a class of three-point functions of operators built upon more general spin-chain vacua than the special configuration discussed so far in the literature. Furthermore, this new viewpoint has the signicant advantage over the conventional method: In the usual "tailoring" operation, the Wick contraction produces inner products between off-shell Bethe states, which cannot be in general converted into simple expressions. In contrast, our procedure directly produces the so-called partial domain wall partition functions, which can be expressed as determinants. Using this property, we derive simple determinantal representation for a broader class of three-point functions. The second new property uncovered in this work is the non-trivial identity satisfied by the three-point functions with monodromy operators inserted. Generically this relation connects three-point functions of different operators and can be regarded as a kind of Schwinger-Dyson equation. In particular, this identity reduces in the semiclassical limit to the triviality of the product of local monodromies around the vertex operators, which played a crucial role in providing all important global information on the three-point function in the strong coupling regime. This structure may provide a key to the understanding of the notion of "integrability" beyond the spectral level.Comment: 35 pages;v2 Minor corrections made. An appendix and references added;v3 Typos correcte

    Branch-and-Reduce Exponential/FPT Algorithms in Practice: A Case Study of Vertex Cover

    Full text link
    We investigate the gap between theory and practice for exact branching algorithms. In theory, branch-and-reduce algorithms currently have the best time complexity for numerous important problems. On the other hand, in practice, state-of-the-art methods are based on different approaches, and the empirical efficiency of such theoretical algorithms have seldom been investigated probably because they are seemingly inefficient because of the plethora of complex reduction rules. In this paper, we design a branch-and-reduce algorithm for the vertex cover problem using the techniques developed for theoretical algorithms and compare its practical performance with other state-of-the-art empirical methods. The results indicate that branch-and-reduce algorithms are actually quite practical and competitive with other state-of-the-art approaches for several kinds of instances, thus showing the practical impact of theoretical research on branching algorithms.Comment: To appear in ALENEX 201

    Cut Tree Construction from Massive Graphs

    Full text link
    The construction of cut trees (also known as Gomory-Hu trees) for a given graph enables the minimum-cut size of the original graph to be obtained for any pair of vertices. Cut trees are a powerful back-end for graph management and mining, as they support various procedures related to the minimum cut, maximum flow, and connectivity. However, the crucial drawback with cut trees is the computational cost of their construction. In theory, a cut tree is built by applying a maximum flow algorithm for nn times, where nn is the number of vertices. Therefore, naive implementations of this approach result in cubic time complexity, which is obviously too slow for today's large-scale graphs. To address this issue, in the present study, we propose a new cut-tree construction algorithm tailored to real-world networks. Using a series of experiments, we demonstrate that the proposed algorithm is several orders of magnitude faster than previous algorithms and it can construct cut trees for billion-scale graphs.Comment: Short version will appear at ICDM'1

    Fast Exact Shortest-Path Distance Queries on Large Networks by Pruned Landmark Labeling

    Full text link
    We propose a new exact method for shortest-path distance queries on large-scale networks. Our method precomputes distance labels for vertices by performing a breadth-first search from every vertex. Seemingly too obvious and too inefficient at first glance, the key ingredient introduced here is pruning during breadth-first searches. While we can still answer the correct distance for any pair of vertices from the labels, it surprisingly reduces the search space and sizes of labels. Moreover, we show that we can perform 32 or 64 breadth-first searches simultaneously exploiting bitwise operations. We experimentally demonstrate that the combination of these two techniques is efficient and robust on various kinds of large-scale real-world networks. In particular, our method can handle social networks and web graphs with hundreds of millions of edges, which are two orders of magnitude larger than the limits of previous exact methods, with comparable query time to those of previous methods.Comment: To appear in SIGMOD 201
    • …
    corecore