14 research outputs found

    Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4.

    Get PDF
    金沢大学医薬保健研究域薬学系金沢大学医薬保健研究域薬学系Pregnane X receptor (PXR) is a major transcription factor regulating the inducible expression of a variety of transporters and drug-metabolizing enzymes, including CYP3A4 (cytochrome P450 3A4). We first found that the PXR mRNA level was not correlated with the PXR protein level in a panel of 25 human livers, indicating the involvement of post-transcriptional regulation. Notably, a potential miR-148a recognition element was identified in the 3\u27-untranslated region of human PXR mRNA. We investigated whether PXR might be regulated by miR-148a. A reporter assay revealed that miR-148a could recognize the miR-148a recognition element of PXR mRNA. The PXR protein level was decreased by the overexpression of miR-148a, whereas it was increased by inhibition of miR-148a. The miR-148a-dependent decrease of PXR protein attenuated the induction CYP3A4 mRNA. Furthermore, the translational efficiency of PXR (PXR protein/PXR mRNA ratio) was inversely correlated with the expression levels of miR-148a in a panel of 25 human livers, supporting the miR-148a-dependent regulation of PXR in human livers. Eventually, the PXR protein level was significantly correlated with the CYP3A4 mRNA and protein levels. In conclusion, we found that miR-148a post-transcriptionally regulated human PXR, resulting in the modulation of the inducible and/or constitutive levels of CYP3A4 in human liver. This study will provide new insight into the unsolved mechanism of the large interindividual variability of CYP3A4 expression

    Human CYP2E1 is regulated by miR-378.

    Get PDF
    金沢大学医薬保健研究域薬学系Human CYP2E1 is one of the pharmacologically and toxicologically important cytochrome P450 isoforms. Earlier studies have reported that the CYP2E1 expression is extensively regulated by post-transcriptional and post-translational mechanisms, but the molecular basis remains unclear. In the present study, we examined the possibility that microRNA may be involved in the post-transcriptional regulation of human CYP2E1. In silico analysis identified a potential recognition element of miR-378 (MRE378) in the 3\u27-untranslated region (UTR) of human CYP2E1 mRNA. Luciferase assays using HEK293 cells revealed that the reporter activity of the plasmid containing the MRE378 was decreased by co-transfection of precursor miR-378, indicating that miR-378 functionally recognized the MRE378. We established two HEK293 cell lines stably expressing human CYP2E1 including or excluding 3\u27-UTR. When the precursor miR-378 was transfected into the cells expressing human CYP2E1 including 3\u27-UTR, the CYP2E1 protein level and chlorzoxazone 6-hydroxylase activity were significantly decreased, but were not in the cells expressing CYP2E1 excluding 3\u27-UTR. In both cell lines, the CYP2E1 mRNA levels were decreased by overexpression of miR-378, but miR-378 did not affect the stability of CYP2E1 mRNA. In a panel of 25 human livers, no positive correlation was observed between the CYP2E1 protein and CYP2E1 mRNA levels, supporting the post-transcriptional regulation. Interestingly, the miR-378 levels were inversely correlated with the CYP2E1 protein levels and the translational efficiency of CYP2E1. In conclusion, we found that human CYP2E1 expression is regulated by miR-378, mainly via translational repression. This study could provide new insight into the unsolved mechanism of the post-transcriptional regulation of CYP2E1. Copyright 2009 Elsevier Inc. All rights reserved

    Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    Get PDF
    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. © 2012 Elsevier Inc
    corecore