102 research outputs found
Seasonal variation of radial brightness contrast of Saturn's rings viewed in mid-infrared by Subaru/COMICS
Aims. To investigate the mid-infrared (MIR) characteristics of Saturn's
rings. Methods. We collected and analyzed MIR high spatial resolution images of
Saturn's rings obtained in January 2008 and April 2005 with COMICS mounted on
Subaru Telescope, and investigated the spatial variation in the surface
brightness of the rings in multiple bands in the MIR. We also composed the
spectral energy distributions (SEDs) of the C, B, and A rings and the Cassini
Division, and estimated the temperatures of the rings from the SEDs assuming
the optical depths. Results. We find that the C ring and the Cassini Division
were warmer than the B and A rings in 2008, which could be accounted for by
their lower albedos, lower optical depths, and smaller self-shadowing effect.
We also find that the C ring and the Cassini Division were considerably
brighter than the B and A rings in the MIR in 2008 and the radial contrast of
the ring brightness is the inverse of that in 2005, which is interpreted as a
result of a seasonal effect with changing elevations of the sun and observer
above the ring plane.Comment: 8 pages, 6 figures, accepted for publication in Astronomy &
Astrophysic
Flared Disks and Silicate Emission in Young Brown Dwarfs
We present mid-infrared photometry of three very young brown dwarfs located
in the Ophiuchi star-forming region -- GY5, GY11 and GY310 --obtained
with the Subaru 8-meter telescope. All three sources were detected at 8.6 and
11.7m, confirming the presence of significant mid-infrared excess arising
from optically thick dusty disks. The spectral energy distributions of both
GY310 and GY11 exhibit strong evidence of flared disks; flat disks can be ruled
out for these two brown dwarfs. The data for GY5 show large scatter, and are
marginally consistent with both flared and flat configurations. Inner holes a
few substellar radii in size are indicated in all three cases (and especially
in GY11), in agreement with magnetospheric accretion models. Finally, our
9.7m flux for GY310 implies silicate emission from small grains on the
disk surface (though the data do not completely preclude larger grains with no
silicate feature). Our results demonstrate that disks around young substellar
objects are analogous to those girdling classical T Tauri stars, and exhibit a
similar range of disk geometries and dust properties.Comment: submitted to Astrophysical Journal Letter
Crystalline Silicate Feature of the Vega-like star HD145263
We have observed the 8-13 m spectrum (R250) of the Vega-like star
candidate HD145263 using Subaru/COMICS. The spectrum of HD145263 shows the
broad trapezoidal silicate feature with the shoulders at 9.3 m and 11.44
m, indicating the presence of crystalline silicate grains. This detection
implies that crystalline silicate may also be commonly present around Vega-like
stars. The 11.44 m feature is slightly shifted to a longer wavelength
compared to the usual 11.2-3 m crystalline forsterite feature detected
toward Herbig Ae/Be stars and T Tauri stars. Although the peak shift due to the
effects of the grain size can not be ruled out, we suggest that Fe-bearing
crystalline olivine explains the observed peak wavelength fairly well.
Fe-bearing silicates are commonly found in meteorites and most interplanetary
dust particles, which originate from planetesimal-like asteroids. According to
studies of meteorites, Fe-bearing silicate must have been formed in asteroidal
planetesimals, supporting the scenario that dust grains around Vega-like stars
are of planetesimal origin, if the observed 11.44 m peak is due to
Fe-bearing silicates.Comment: accepted for Publication in ApJ
Subaru Hyper Suprime-Cam Survey for An Optical Counterpart of GW170817
We perform a -band survey for an optical counterpart of a binary neutron
star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted
transient search covers deg corresponding to the credible
region of GW170817 and reaches the completeness magnitude of mag
on average. As a result, we find 60 candidates of extragalactic transients,
including J-GEM17btc (a.k.a. SSS17a/DLT17ck). While J-GEM17btc is associated
with NGC 4993 that is firmly located inside the 3D skymap of GW170817, the
other 59 candidates do not have distance information in the GLADE v2 catalog or
NASA/IPAC Extragalactic Database (NED). Among 59 candidates, 58 are located at
the center of extended objects in the Pan-STARRS1 catalog, while one candidate
has an offset. We present location, -band apparent magnitude, and time
variability of the candidates and evaluate the probabilities that they are
located inside of the 3D skymap of GW170817. The probability for J-GEM17btc is
being much higher than those for the other 59 candidates
(). Furthermore, the possibility, that at
least one of the other 59 candidates is located within the 3D skymap, is only
. Therefore, we conclude that J-GEM17btc is the most-likely and
distinguished candidate as the optical counterpart of GW170817.Comment: 14 pages, 9 figures. Accepted for publication in PASJ (Publications
of the Astronomical Society of Japan
- …
