40 research outputs found

    Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

    Get PDF
    We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes

    Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy

    Get PDF
    ObjectivesWe sought to explore the relationship between a Tcap gene (TCAP)abnormality and cardiomyopathy.BackgroundHypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) cause severe heart failure and sudden death. Recent genetic investigations have revealed that mutations of genes encoding Z-disc components, including titin and muscle LIM protein (MLP), are the primary cause of both HCM and DCM. The Z-disc plays a role in establishing the mechanical coupling of sarcomeric contraction and stretching, with the titin/Tcap/MLP complex serving as a mechanical stretch sensor. Tcap interacts with the calsarcin, which tethers the calcineurin to the Z-disc.MethodsThe TCAPwas analyzed in 346 patients with HCM (236 familial and 110 sporadic cases) and 136 patients with DCM (34 familial and 102 sporadic cases). Two different in vitro qualitative assays—yeast two-hybrid and glutathion S-transferase pull-down competition—were performed in order to investigate functional changes in Tcap's interaction with MLP, titin, and calsarcin-1 caused by the identified mutations and a reported DCM-associated mutation, R87Q.ResultsTwo TCAPmutations, T137I and R153H, were found in patients with HCM, and another TCAPmutation, E132Q, was identified in a patient with DCM. It was demonstrated by the qualitative assays that the HCM-associated mutations augment the ability of Tcap to interact with titin and calsarcin-1, whereas the DCM-associated mutations impair the interaction of Tcap with MLP, titin, and calsarcin-1.ConclusionsThese observations suggest that the difference in clinical phenotype (HCM or DCM) may be correlated with the property of altered binding among the Z-disc components

    Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies: Possible association with malignancy

    Get PDF
    Objectives: Myositis-specific autoantibodies (MSAs) are useful tools for identifying clinically homogeneous subsets and predicting prognosis of patients with idiopathic inflammatory myopathies (IIM) including polymyositis (PM) and dermatomyositis (DM). Recent studies have shown that anti-NXP2 antibody (Ab) is a major MSA in juvenile dermatomyositis (JDM). In this study the frequencies and clinical associations of anti-NXP2 Ab were evaluated in adult patients with IIM. Methods: Clinical data and serum samples were collected from 507 adult Japanese patients with IIM (445 with DM and 62 with PM). Eleven patients with JDM, 108 with systemic lupus erythematosus, 433 with systemic sclerosis and 124 with idiopathic pulmonary fibrosis were assessed as disease controls. Serum was examined for anti-NXP2 Ab by immunoprecipitation and western blotting using polyclonal anti-NXP2 Ab. Results: Seven patients (1.6%) with adult DM and one (1.6%) with adult PM were positive for anti-NXP2 Ab. Except for two patients with JDM, none of the disease controls were positive for this autoantibody. Among eight adult patients with IIM, three had internal malignancies within 3 years of diagnosis of IIM. Another patient with DM also had a metastatic cancer at the diagnosis. All of the carcinomas were at an advanced stage (stage IIIb-IV). Conclusions: While less common than in juvenile IIM, anti-NXP2 Ab was found in adult IIM. Anti-NXP2 Ab may be associated with adult IIM with malignancy

    Antioxidative Behaviors of 4-Hydroxy-2,5-dimethyl-3(2 H

    No full text

    Effect of vitamin E on human aortic endothelial cell production of chemokines and adhesion to monocytes

    No full text
    Epidemiological and clinical studies indicate that vitamin E may reduce the risk of cardiovascular disease (CVD). Modulation of adhesion molecule expression and chemokine production by vitamin E may contribute to its beneficial effect. In this study we found that the enrichment of confluent human aortic endothelial cells (HAEC) or U937 monocytic cells with increasing doses of vitamin E (d-α-tocopherol, 20, 40, and 60 μmol/l for 20 h) inhibited their adhesion when either or both cell types were stimulated with interleukin (IL)-1β. Enrichment of HAEC with the same doses of vitamin E suppressed IL-1β-stimulated expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin). Supplementation with increasing doses of vitamin E up to 60 μmol/l was not effective in preventing spontaneous production of monocyte chemoattractant protein-1 (MCP-1), but supplementation with vitamin E at 60 μmol/l reduced IL-8 production significantly. However, IL-1β-induced productions of both MCP-1 and IL-8 were dose-dependently suppressed by enrichment of cells with vitamin E. Vitamin E, at the doses used, did not significantly change the spontaneous production but dose-dependently inhibited the IL-1β-induced production of inflammatory cytokine IL-6. We concluded that vitamin E could inhibit production of chemokines and inflammatory cytokines, in addition to inhibiting adhesion of HAEC to monocytes by reducing expression of adhesion molecules when cells were activated with an inflammatory cytokine. These mediators are actively involved in the pathogenesis of atherosclerosis. Therefore, their inhibition by vitamin E may contribute to vitamin E\u27s reported reduction in risk of CVD. Copyright (C) 1999 Elsevier Science Ireland Ltd

    Recovery of a salinized tomato field in a coastal polder after the 2016 Kumamoto Earthquake in Japan

    No full text
    After the 2016 Kumamoto Earthquake (Kumamoto earthquake sequence) of maximum magnitude M7.3 occurred, agricultural fields and crops were significantly damaged by soil liquefaction in lowland polders, which had shallow saline groundwater. A desalinization treatment was required to recover agricultural production in polders in Kumamoto. To understand the soil salinity levels in the root zone, we installed multiple-point measurements using the wireless sensor network system (WSNS) for real-time monitoring of soil moisture (θ ) and bulk soil EC (ECb) in a cherry tomato greenhouse. Pore-water electrical conductivity (ECw) can be estimated as an indicator of the field's salinity level simultaneously. First, we found rapid increases in θ and ECw where soil liquefaction and sand boils occurred. Through soil survey, we confirmed the existence of a large channel beneath one of the liquefaction plots, suggesting considerably high spatial heterogeneity of soil salinity across the greenhouse. Secondly, the high salinity level could not be controlled by drip irrigation at all. Finally, 1-week flooded leaching treatments were carried out; the electrical resistivity tomography (ERT) survey indicated that the salinity level decreased significantly except around the channel plot. The combination of the flooded leaching and natural rainfall was more effective for salt leaching in macropores and channels. Our analysis using the WSNS highlighted three management strategies that may help reduce a polder's salinity level

    Nasal polyps show decreased mucociliary transport despite vigorous ciliary beating

    No full text
    Objective: Mucociliary transport function in the airway mucosa is essential for maintaining a clean mucosal surface. This function is impaired in upper and lower airway diseases. Nasal polyps are a noticeable pathological feature that develop in some of the patients with chronic rhinosinusitis. Like ordinary nasal mucosae, nasal polyps have a ciliated pseudostratified epithelium with vigorous ciliary beating. We measured ex vivo Mucociliary Transport Velocity (MCTV) and Ciliary Beat Frequency (CBF) and explored the expressions of Planar Cell Polarity (PCP) proteins in nasal polyps in comparison with turbinate mucosae. Methods: Inferior turbinates and nasal polyps were surgically collected from patients with chronic rhinosinusitis. Ex vivo MCTV and CBF were measured using a high-speed digital imaging system. Expressions of PCP proteins were explored by fluorescence immunohistochemistry and quantitative RT-PCR. Results: The MCTV of nasal polyps was significantly lower than that of the turbinates (7.43 ± 2.01 vs. 14.56 ± 2.09 mm/s; p = 0.0361), whereas CBF did not differ between the two tissues. The MCTV vector was pointed to the posteroinferior direction in all turbinates with an average inclination angle of 41.0 degrees. Immunohistochemical expressions of Dishevelled-1, Dishevelled-3, Frizzled3, Frizzled6, Prickle2 and Vangl2 were lower in the nasal polyps than in the turbinates. Confocal laser scanning microscopy showed that Frizzled3 was localized along the cell junction on the apical surface. The expression levels of mRNAs for Dishevelled-1, Dishevelled-3 and Frizzled3 in the nasal polyps were also decreased in comparison with the turbinates. Conclusion: These results indicate that muco ciliary transport in nasal polyps is impaired although vigorous ciliary beating is maintained, and that the impairment may be caused by a decrease in Dishevelled/Frizzled proteins and resultant PCP disarrangement. Level of evidence: Level 3

    Effect of Parylene C on the Corrosion Resistance of Bioresorbable Cardiovascular Stents Made of Magnesium Alloy &lsquo;Original ZM10&rsquo;

    No full text
    Magnesium (Mg) alloy has attracted significant attention as a bioresorbable scaffold for use as a next-generation stent because of its mechanical properties and biocompatibility. However, Mg alloy quickly degrades in the physiological environment. In this study, we investigated whether applying a parylene C coating can improve the corrosion resistance of a Mg alloy stent, which is made of &lsquo;Original ZM10&rsquo;, free of aluminum and rare earth elements. The coating exhibited a smooth surface with no large cracks, even after balloon expansion of the stent, and improved the corrosion resistance of the stent in cell culture medium. In particular, the parylene C coating of a hydrofluoric acid-treated Mg alloy stent led to excellent corrosion resistance. In addition, the parylene C coating did not affect a polymer layer consisting of poly(&epsilon;-caprolactone) and poly(D,L-lactic acid) applied as an additional coating for the drug release to suppress restenosis. Parylene C is a promising surface coating for bioresorbable Mg alloy stents for clinical applications
    corecore