138 research outputs found

    Electrical Resistivity of Laves Phase Compounds Containing Transition Elements : I. Fe_2A (A=Sc, Y, Ti, Zr, Hf, Nb, and Ta)(Physics)

    Get PDF
    The electrical resistivity of a series of Fe_2A Laves phase compounds was measured in order to investigate its mutual correlation with their magnetic properties. In the ferromagnetic or antiferromagnetic Fe_2A compounds (A=Sc, Y, Ti, Zr, Hf, and U), a linear relation between the magnetic resistivity at temperatures above the Curie or Neel point and the localized magnetic moment was found, which means that the magnetic resistivity of these compounds is governed by the magnitude of magnetic moments. The electrical resistivity in the Pauli-paramagnetic Fe_Nb_ and Fe_Ta_ compounds with x≈0 shows a fairly large temperature variation, which seems to be due to the paramagnon scattering, whereas ρ-T curves in the iron-rich compounds suggest that the appearance of ferromagnetism is caused by the existence of the excess iron atoms occupying the wrong atomic sites

    The Concept and Impact Analysis of a Flexible Mobility on Demand System

    Get PDF
    This paper introduces an innovative transportation concept called Flexible Mobility on Demand (FMOD), which provides personalized services to passengers. FMOD is a demand responsive system in which a list of travel options is provided in real-time to each passenger request. The system provides passengers with flexibility to choose from a menu that is optimized in an assortment optimization framework. For operators, there is flexibility in terms of vehicle allocation to di erent service types: taxi, shared-taxi and mini-bus. The allocation of the available fleet to these three services is carried out dynamically and based on demand and supply so that vehicles can change roles during the day. The FMOD system is built based on a choice model and consumer surplus is taken into account in order to improve the passenger satisfaction. Furthermore, pro fits of the operators are expected to increase since the system adapts to changing demand patterns. In this paper, we introduce the concept of FMOD and present preliminary simulation results that quantify the added value of this system.Fujitsu Laboratories funding under the OSP account 6925717 Fujitsu Laboratories funding under the OSP account 6927900 Fujitsu Laboratories funding under the OSP account 692960

    The concept and impact analysis of a flexible mobility on demand system

    Get PDF
    This paper introduces an innovative transportation concept called Flexible Mobility on Demand (FMOD), which provides personalized services to passengers. FMOD is a demand responsive system in which a list of travel options is provided in real-time to each passen- ger request. The system provides passengers with flexibility to choose from a menu that is optimized in an assortment optimization framework. For operators, there is flexibility in terms of vehicle allocation to different service types: taxi, shared-taxi and mini-bus. The allocation of the available fleet to these three services is carried out dynamically so that vehicles can change roles during the day. The FMOD system is built based on a choice model and consumer surplus is taken into account in order to improve passenger satisfac- tion. Furthermore, profits of the operators are expected to increase since the system adapts to changing demand patterns. In this paper, we introduce the concept of FMOD and present preliminary simulation results. It is shown that the dynamic allocation of the vehicles to different services provides significant benefits over static allocation. Furthermore, it is observed that the trade-off between consumer surplus and operator’s profit is critical. The optimization model is adapted in order to take into account this trade-off by control- ling the level of passenger satisfaction. It is shown that with such control mechanisms FMOD provides improved results in terms of both profit and consumer surplus

    Software Defined Media: Virtualization of Audio-Visual Services

    Full text link
    Internet-native audio-visual services are witnessing rapid development. Among these services, object-based audio-visual services are gaining importance. In 2014, we established the Software Defined Media (SDM) consortium to target new research areas and markets involving object-based digital media and Internet-by-design audio-visual environments. In this paper, we introduce the SDM architecture that virtualizes networked audio-visual services along with the development of smart buildings and smart cities using Internet of Things (IoT) devices and smart building facilities. Moreover, we design the SDM architecture as a layered architecture to promote the development of innovative applications on the basis of rapid advancements in software-defined networking (SDN). Then, we implement a prototype system based on the architecture, present the system at an exhibition, and provide it as an SDM API to application developers at hackathons. Various types of applications are developed using the API at these events. An evaluation of SDM API access shows that the prototype SDM platform effectively provides 3D audio reproducibility and interactiveness for SDM applications.Comment: IEEE International Conference on Communications (ICC2017), Paris, France, 21-25 May 201

    The posterior parietal cortex contributes to visuomotor processing for saccades in blindsight macaques

    Get PDF
    Patients with damage to the primary visual cortex (V1) lose visual awareness, yet retain the ability to perform visuomotor tasks, which is called "blindsight." To understand the neural mechanisms underlying this residual visuomotor function, we studied a non-human primate model of blindsight with a unilateral lesion of V1 using various oculomotor tasks. Functional brain imaging by positron emission tomography showed a significant change after V1 lesion in saccade-related visuomotor activity in the intraparietal sulcus area in the ipsi- and contralesional posterior parietal cortex. Single unit recordings in the lateral bank of the intraparietal sulcus (lbIPS) showed visual responses to targets in the contralateral visual field on both hemispheres. Injection of muscimol into the ipsi- or contralesional lbIPSs significantly impaired saccades to targets in the V1 lesion-affected visual field, differently from previous reports in intact animals. These results indicate that the bilateral lbIPSs contribute to visuomotor function in blindsight

    Residual Attention Guidance in Blindsight Monkeys Watching Complex Natural Scenes

    Get PDF
    SummaryPatients with damage to primary visual cortex (V1) demonstrate residual performance on laboratory visual tasks despite denial of conscious seeing (blindsight) [1]. After a period of recovery, which suggests a role for plasticity [2], visual sensitivity higher than chance is observed in humans and monkeys for simple luminance-defined stimuli, grating stimuli, moving gratings, and other stimuli [3–7]. Some residual cognitive processes including bottom-up attention and spatial memory have also been demonstrated [8–10]. To date, little is known about blindsight with natural stimuli and spontaneous visual behavior. In particular, is orienting attention toward salient stimuli during free viewing still possible? We used a computational saliency map model to analyze spontaneous eye movements of monkeys with blindsight from unilateral ablation of V1. Despite general deficits in gaze allocation, monkeys were significantly attracted to salient stimuli. The contribution of orientation features to salience was nearly abolished, whereas contributions of motion, intensity, and color features were preserved. Control experiments employing laboratory stimuli confirmed the free-viewing finding that lesioned monkeys retained color sensitivity. Our results show that attention guidance over complex natural scenes is preserved in the absence of V1, thereby directly challenging theories and models that crucially depend on V1 to compute the low-level visual features that guide attention

    Secondary motor areas for response inhibition: an epicortical recording and stimulation study

    Get PDF
    The areas that directly inhibit motor responses in the human brain remain not fully clarified, although the pre-supplementary motor area and lateral premotor areas have been implicated. The objective of the present study was to delineate the critical areas for response inhibition and the associated functional organization of the executive action control system in the frontal lobe. The subjects were eight intractable focal epilepsy patients with chronic subdural or depth electrode implantation for presurgical evaluation covering the frontal lobe (five for left hemisphere, three for right). We recorded event-related potentials to a Go/No-Go task. We then applied a brief 50 Hz electrical stimulation to investigate the effect of the intervention on the task. Brief stimulation was given to the cortical areas generating discrete event-related potentials specific for the No-Go trials (1–3 stimulation sites/patient, a total of 12 stimulation sites). We compared the locations of event-related potentials with the results of electrical cortical stimulation for clinical mapping. We also compared the behavioural changes induced by another brief stimulation with electrical cortical stimulation mapping. As the results, anatomically, No-Go-specific event-related potentials with relatively high amplitude, named ‘large No-Go event-related potentials’, were observed predominantly in the secondary motor areas, made up of the supplementary motor area proper, the pre-supplementary motor area, and the lateral premotor areas. Functionally, large No-Go event-related potentials in the frontal lobe were located at or around the negative motor areas or language-related areas. Brief stimulation prolonged Go reaction time at most stimulation sites (66.7%) [P < 0.0001, effect size (d) = 0.30, Wilcoxon rank sum test], and increased No-Go error at some stimulation sites (25.0%: left posterior middle frontal gyrus and left pre-supplementary motor area). The stimulation sites we adopted for brief stimulation were most frequently labelled ‘negative motor area’ (63.6%), followed by ‘language-related area’ (18.2%) by the electrical cortical stimulation mapping. The stimulation sites where the brief stimulation increased No-Go errors tended to be labelled ‘language-related area’ more frequently than ‘negative motor area’ [P = 0.0833, Fisher’s exact test (two-sided)] and were located more anteriorly than were those without a No-Go error increase. By integrating the methods of different modality, namely, event-related potentials combined with brief stimulation and clinical electrical cortical stimulation mapping, we conducted a novel neuroscientific approach, providing direct evidence that secondary motor areas, especially the pre-supplementary motor area and posterior middle frontal gyrus, play an important role in response inhibition

    Distinct connectivity patterns in human medial parietal cortices: Evidence from standardized connectivity map using cortico-cortical evoked potential

    Get PDF
    The medial parietal cortices are components of the default mode network (DMN), which are active in the resting state. The medial parietal cortices include the precuneus and the dorsal posterior cingulate cortex (dPCC). Few studies have mentioned differences in the connectivity in the medial parietal cortices, and these differences have not yet been precisely elucidated. Electrophysiological connectivity is essential for understanding cortical function or functional differences. Since little is known about electrophysiological connections from the medial parietal cortices in humans, we evaluated distinct connectivity patterns in the medial parietal cortices by constructing a standardized connectivity map using cortico-cortical evoked potential (CCEP). This study included nine patients with partial epilepsy or a brain tumor who underwent chronic intracranial electrode placement covering the medial parietal cortices. Single-pulse electrical stimuli were delivered to the medial parietal cortices (38 pairs of electrodes). Responses were standardized using the z-score of the baseline activity, and a response density map was constructed in the Montreal Neurological Institutes (MNI) space. The precuneus tended to connect with the inferior parietal lobule (IPL), the occipital cortex, superior parietal lobule (SPL), and the dorsal premotor area (PMd) (the four most active regions, in descending order), while the dPCC tended to connect to the middle cingulate cortex, SPL, precuneus, and IPL. The connectivity pattern differs significantly between the precuneus and dPCC stimulation (p<0.05). Regarding each part of the medial parietal cortices, the distributions of parts of CCEP responses resembled those of the functional connectivity database. Based on how the dPCC was connected to the medial frontal area, SPL, and IPL, its connectivity pattern could not be explained by DMN alone, but suggested a mixture of DMN and the frontoparietal cognitive network. These findings improve our understanding of the connectivity profile within the medial parietal cortices. The electrophysiological connectivity is the basis of propagation of electrical activities in patients with epilepsy. In addition, it helps us to better understand the epileptic network arising from the medial parietal cortices
    corecore