15 research outputs found

    Ab initio Derivation of Low-Energy Hamiltonians for Systems with Strong Spin-Orbit Interaction and Its Application to Ca5Ir3O12

    Get PDF
    We present an ab initio derivation method for effective low-energy Hamiltonians of material with strong spin-orbit interactions. The effective Hamiltonian is described in terms of the Wannier function in the spinor form, and effective interactions are derived with the constrained random phase approximation (cRPA) method. Based on this formalism and the developed code, we derive an effective Hamiltonian of a strong spin-orbit interaction material Ca5 Ir3 O12. This system consists of three edge-shared IrO6 octahedral chains arranged along the c axis, and the three Ir atoms in the ab plane compose a triangular lattice. For such a complicated structure, we need to set up the Wannier spinor function under the local coordinate system. We found that a density-functional band structure near the Fermi level is formed by local dxy and dyz orbitals. Then, we constructed the ab initio dxy/dyz model. The estimated nearest-neighbor transfer t is close to 0.2 eV, and the cRPA on-site U and neighboring V electronic interactions are found to be 2.4–2.5 eV and 1 eV, respectively. The resulting characteristic correlation strength defined by (U−V)/t is above 7, and thus this material is classified as a strongly correlated electron system. The on-site transfer integral involved in the spin-orbit interaction is 0.2 eV, which is comparable to the on-site exchange integrals ∼0.2 eV, indicating that the spin-orbit-interaction physics would compete with the Hund physics. Based on these calculated results, we discuss possible rich ground-state low-energy electronic structures of spin, charge, and orbitals with competing Hund, spin-orbit, and strong-correlation physics

    Surrounding Gastric Mucosa Findings Facilitate Diagnosis of Gastric Neoplasm as Gastric Adenoma or Early Gastric Cancer

    Get PDF
    Background and Aim. It is difficult to master the skill of discriminating gastric adenoma from early gastric cancer by conventional endoscopy or magnifying endoscopy combined with narrow-band imaging, because the colors and morphologies of these neoplasms are occasionally similar. We focused on the surrounding gastric mucosa findings in order to determine how to discriminate between early gastric cancer and gastric adenoma by analyzing the characteristics of the gastric background mucosa. Methods. We retrospectively examined 146 patients who underwent endoscopic submucosal dissection for gastric neoplasm between October 2009 and January 2015. The boundary of atrophic gastritis was classified endoscopically according to the Kimura-Takemoto classification system. Of 146 lesions, 63 early gastric cancers and 21 gastric adenomas were ultimately evaluated and assessed. Results. Almost all gastric adenomas were accompanied by open-type gastritis, whereas 47 and 16 early gastric cancers were accompanied by open-type and closed-type gastritis, respectively (p = 0.037). Conclusions. The evaluation of the boundary of atrophic gastritis associated with gastric neoplasms appears to be useful for discrimination between early gastric cancer and gastric adenoma. When gastric neoplasm is present in the context of surrounding localized gastric atrophy, gastric cancer is probable but not certain

    Gene expression profiling of loss of TET2 and/or JAK2V617F mutant hematopoietic stem cells from mouse models of myeloproliferative neoplasms

    Get PDF
    AbstractMyeloproliferative neoplasms (MPNs) are clinically characterized by the chronic overproduction of differentiated peripheral blood cells and the gradual expansion of malignant intramedullary/extramedullary hematopoiesis. In MPNs mutations in JAK2 MPL or CALR are detected mutually exclusive in more than 90% of cases [1,2]. Mutations in them lead to the abnormal activation of JAK/STAT signaling and the autonomous growth of differentiated cells therefore they are considered as “driver” gene mutations. In addition to the above driver gene mutations mutations in epigenetic regulators such as TET2 DNMT3A ASXL1 EZH2 or IDH1/2 are detected in about 5%–30% of cases respectively [3]. Mutations in TET2 DNMT3A EZH2 or IDH1/2 commonly confer the increased self-renewal capacity on normal hematopoietic stem cells (HSCs) but they do not lead to the autonomous growth of differentiated cells and only exhibit subtle clinical phenotypes [4,6–8,5]. It was unclear how mutations in such epigenetic regulators influenced abnormal HSCs with driver gene mutations how they influenced the disease phenotype or whether a single driver gene mutation was sufficient for the initiation of human MPNs. Therefore we focused on JAK2V617F and loss of TET2—the former as a representative of driver gene mutations and the latter as a representative of mutations in epigenetic regulators—and examined the influence of single or double mutations on HSCs (Lineage−Sca-1+c-Kit+ cells (LSKs)) by functional analyses and microarray whole-genome expression analyses [9]. Gene expression profiling showed that the HSC fingerprint genes [10] was statistically equally enriched in TET2-knockdown-LSKs but negatively enriched in JAK2V617F–LSKs compared to that in wild-type-LSKs. Double-mutant-LSKs showed the same tendency as JAK2V617F–LSKs in terms of their HSC fingerprint genes but the expression of individual genes differed between the two groups. Among 245 HSC fingerprint genes 100 were more highly expressed in double-mutant-LSKs than in JAK2V617F–LSKs. These altered gene expressions might partly explain the mechanisms of initiation and progression of MPNs which was observed in the functional analyses [9]. Here we describe gene expression profiles deposited at the Gene Expression Omnibus (GEO) under the accession number GSE62302 including experimental methods and quality control analyses

    Double-filtration plasmapheresis reduces type I interferon bioavailability and inducing activity in systemic lupus erythematosus

    No full text
    Type I interferons (IFN-Is) play a significant role in systemic lupus erythematosus (SLE) pathogenesis. Double-filtration plasmapheresis (DFPP) is a treatment option for SLE; however, its effect on IFN-Is remains unclear. Therefore, we investigated the effects of DFPP on IFN-Is. Plasma from patients with SLE (n = 11) who regularly underwent DFPP was analysed using a cell-based reporter system to detect the bioavailability and inducing activity of IFN-I. The concentration of plasma dsDNA was measured, and western blotting analysis was used to assess the phosphorylation of the STING pathway. A higher IFN-I bioavailability and inducing activity were observed in patients compared to healthy controls, and both parameters decreased after DFPP. The reduction in IFN-I-inducing activity was particularly prominent in patients with high disease activity. Notably, this reduction was not observed in STING-knockout reporter cells. Additionally, plasma dsDNA levels decreased after DFPP treatment, suggesting that inhibition of the STING pathway was responsible for the observed decrease in activity. Western blotting analysis revealed suppression of STING pathway phosphorylation after DFPP. DFPP reduced IFN-I bioavailability and the inducing activity of plasma. This reduction is likely attributable to the inhibition of the STING pathway through the elimination of dsDNA

    A Reverse-Transcription Loop-Mediated Isothermal Amplification Technique to Detect Tomato Mottle Mosaic Virus, an Emerging Tobamovirus

    No full text
    Tomato mottle mosaic virus (ToMMV) is an emerging seed-transmissible tobamovirus that infects tomato and pepper. Since the first report in 2013 in Mexico, ToMMV has spread worldwide, posing a serious threat to the production of both crops. To prevent the spread of this virus, early and accurate detection of infection is required. In this study, we developed a detection method for ToMMV based on reverse-transcription loop-mediated isothermal amplification (RT-LAMP). A LAMP primer set was designed to target the genomic region spanning the movement protein and coat protein genes, which is a highly conserved sequence unique to ToMMV. This RT-LAMP detection method achieved 10-fold higher sensitivity than conventional RT-polymerase chain reaction methods and obtained high specificity without false positives for closely related tobamoviruses or healthy tomato plants. This method can detect ToMMV within 30 min of direct sampling of an infected tomato leaf using a toothpick and therefore does not require RNA purification. Given its high sensitivity, specificity, simplicity, and rapidity, the RT-LAMP method developed in this study is expected to be valuable for point-of-care testing in field surveys and for large-scale testing
    corecore