337 research outputs found
In Vivo Electrophysiology of Peptidergic Neurons in Deep Layers of the Lumbar Spinal Cord after Optogenetic Stimulation of Hypothalamic Paraventricular Oxytocin Neurons in Rats
The spinal ejaculation generator (SEG) is located in the central gray (lamina X) of the rat lumbar spinal cord and plays a pivotal role in the ejaculatory reflex. We recently reported that SEG neurons express the oxytocin receptor and are activated by oxytocin projections from the paraventricular nucleus of hypothalamus (PVH). However, it is unknown whether the SEG responds to oxytocin in vivo. In this study, we analyzed the characteristics of the brain-spinal cord neural circuit that controls male sexual function using a newly developed in vivo electrophysiological technique. Optogenetic stimulation of the PVH of rats expressing channel rhodopsin under the oxytocin receptor promoter increased the spontaneous firing of most lamina X SEG neurons. This is the first demonstration of the in vivo electrical response from the deeper (lamina X) neurons in the spinal cord. Furthermore, we succeeded in the in vivo whole-cell recordings of lamina X neurons. In vivo whole-cell recordings may reveal the features of lamina X SEG neurons, including differences in neurotransmitters and response to stimulation. Taken together, these results suggest that in vivo electrophysiological stimulation can elucidate the neurophysiological response of a variety of spinal neurons during male sexual behavior
Radiocarbon Calibration for Japanese Wood Samples
The radiocarbon content of Japanese cedars was measured by accelerator mass spectrometry for decadal tree-ring samples from the period of 240 BC to AD 900. Conventional gas counting was also used for part of the samples. The data were compared with the INTCAL98 calibration curve. The results indicate that the difference in atmospheric 14C between Japan and North America or Europe is negligible at this period, less than 18 14C yr using an average of 50 yr. However, in the period of about AD 100 to about AD 200, we cannot exclude the possibility of a deviation of the order of 30 to 40 14C yr to the older ages.
Classification results of coronary heart disease database by using the clonal selection method with receptor editing
The clonal selection principle is used to explain the
basic features of an adaptive immune response to a antigenic
stimulus. It established the idea that only those cells that
recognize the antigens are selected to proliferate and differentiate.
This paper explains a computational implementation of the
clonal selection principle that explicitly takes into account the affinity maturation of the immune response. The clonal selection algorithm by incorporating receptor editing method, RECSA, has been proposed by Gao. This paper tries to classify the medical database of Coronary Heart Disease databases and reports the computational results for 4 kinds of training datasets
Silkworm larvae (Bombyx mori) can learn cues associated with finding food
The present study investigated the ability of silkworm Bombyx mori (Lepidoptera: Bombycidae) larvae to learn. Silkworm larvae were trained to consume food that was placed on red paper; consequently they became attracted to red, rather than blue paper even in the absence of food. In contrast, untrained controls had no preference for either red or blue paper. These results suggested that silkworm larvae learned to associate red paper with food, and that they can discriminate colors.
DOI: http://dx.doi.org/10.5281/zenodo.560946
Characterization of β-N-acetylhexosaminidase (LeHex20A), a member of glycoside hydrolase family 20, from Lentinula edodes shiitake mushroom)
We purified and cloned a β-N-acetylhexosaminidase, LeHex20A, with a molecular mass of 79 kDa from the fruiting body of Lentinula edodes (shiitake mushroom). The gene lehex20a gene had 1,659 nucleotides, encoding 553 amino acid residues. Sequence analysis indicated that LeHex20A belongs to glycoside hydrolase (GH) family 20, and homologues of lehex20a are broadly represented in the genomes of basidiomycetes. Purified LeHex20A hydrolyzed the terminal monosaccharide residues of β-N-acetylgalactosaminides and β-N-acetylglucosaminides, indicating that LeHex20A is a β-N-acetylhexosaminidase classified into EC 3.2.1.52. The maximum LeHex20A activity was observed at pH 4.0 and 50°C. The kinetic constants were estimated using chitooligosaccharides with degree of polymerization 2-6. GH20 β-N-acetylhexosaminidases generally prefer chitobiose among natural substrates. However, LeHex20A had the highest catalytic efficiency (k(cat)/K(m)) for chitotetraose, and the K(m) values for GlcNAc(6) were 3.9-fold lower than for chitobiose. Furthermore, the enzyme partially hydrolyzed amorphous chitin polymers. These results indicate that LeHex20A can produce N-acetylglucosamine from long-chain chitomaterials
Sexual Experience Induces the Expression of Gastrin-Releasing Peptide and Oxytocin Receptors in the Spinal Ejaculation Generator in Rats
Male sexual function in mammals is controlled by the brain neural circuits and the spinal cord centers located in the lamina X of the lumbar spinal cord (L3-L4). Recently, we reported that hypothalamic oxytocin neurons project to the lumbar spinal cord to activate the neurons located in the dorsal lamina X of the lumbar spinal cord (dXL) via oxytocin receptors, thereby facilitating male sexual activity. Sexual experiences can influence male sexual activity in rats. However, how this experience affects the brain-spinal cord neural circuits underlying male sexual activity remains unknown. Focusing on dXL neurons that are innervated by hypothalamic oxytocinergic neurons controlling male sexual function, we examined whether sexual experience affects such neural circuits. We found that >50% of dXL neurons were activated in the first ejaculation group and similar to 30% in the control and intromission groups in sexually naive males. In contrast, in sexually experienced males, similar to 50% of dXL neurons were activated in both the intromission and ejaculation groups, compared to similar to 30% in the control group. Furthermore, sexual experience induced expressions of gastrin-releasing peptide and oxytocin receptors in the lumbar spinal cord. This is the first demonstration of the effects of sexual experience on molecular expressions in the neural circuits controlling male sexual activity in the spinal cord
Immunoelectron Microscopic Characterization of Vasopressin-Producing Neurons in the Hypothalamo-Pituitary Axis of Non-Human Primates by Use of Formaldehyde-Fixed Tissues Stored at-25 degrees C for Several Years
Translational research often requires the testing of experimental therapies in primates, but research in non-human primates is now stringently controlled by law around the world. Tissues fixed in formaldehyde without glutaraldehyde have been thought to be inappropriate for use in electron microscopic analysis, particularly those of the brain. Here we report the immunoelectron microscopic characterization of arginine vasopressin (AVP)-producing neurons in macaque hypothalamo-pituitary axis tissues fixed by perfusion with 4% formaldehyde and stored at -25 degrees C for several years (4-6 years). The size difference of dense-cored vesicles between magnocellular and parvocellular AVP neurons was detectable in their cell bodies and perivascular nerve endings located, respectively, in the posterior pituitary and median eminence. Furthermore, glutamate and the vesicular glutamate transporter 2 could be colocalized with AVP in perivascular nerve endings of both the posterior pituitary and the external layer of the median eminence, suggesting that both magnocellular and parvocellular AVP neurons are glutamatergic in primates. Both ultrastructure and immunoreactivity can therefore be sufficiently preserved in macaque brain tissues stored long-term, initially for light microscopy. Taken together, these results suggest that this methodology could be applied to the human post-mortem brain and be very useful in translational research
The gastrin-releasing peptide/bombesin system revisited by a reverse-evolutionary study considering Xenopus
Bombesin is a putative antibacterial peptide isolated from the skin of the frog, Bombina bombina. Two related (bombesin-like) peptides, gastrin-releasing peptide (GRP) and neuromedin B (NMB) have been found in mammals. The history of GRP/bombesin discovery has caused little attention to be paid to the evolutionary relationship of GRP/bombesin and their receptors in vertebrates. We have classified the peptides and their receptors from the phylogenetic viewpoint using a newly established genetic database and bioinformatics. Here we show, by using a clawed frog (Xenopus tropicalis), that GRP is not a mammalian counterpart of bombesin and also that, whereas the GRP system is widely conserved among vertebrates, the NMB/bombesin system has diversified in certain lineages, in particular in frog species. To understand the derivation of GRP system in the ancestor of mammals, we have focused on the GRP system in Xenopus. Gene expression analyses combined with immunohistochemistry and Western blotting experiments demonstrated that GRP peptides and their receptors are distributed in the brain and stomach of Xenopus. We conclude that GRP peptides and their receptors have evolved from ancestral (GRP-like peptide) homologues to play multiple roles in both the gut and the brain as one of the 'gut-brain peptide' systems
Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord
Oxytocinergic neurons in the paraventricular nucleus of the hypothalamus that project to extrahypothalamic brain areas and the lumbar spinal cord play an important role in the control of erectile function and male sexual behavior in mammals. The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord is an important component of the neural circuits that control penile reflexes in rats, circuits that are commonly referred to as the “spinal ejaculation generator (SEG).” We have examined the functional interaction between the SEG neurons and the hypothalamo-spinal oxytocin system in rats. Here, we show that SEG/GRP neurons express oxytocin receptors and are activated by oxytocin during male sexual behavior. Intrathecal injection of oxytocin receptor antagonist not only attenuates ejaculation but also affects pre-ejaculatory behavior during normal sexual activity. Electron microscopy of potassium-stimulated acute slices of the lumbar cord showed that oxytocin-neurophysin-immunoreactivity was detected in large numbers of neurosecretory dense-cored vesicles, many of which are located close to the plasmalemma of axonal varicosities in which no electron-lucent microvesicles or synaptic membrane thickenings were visible. These results suggested that, in rats, release of oxytocin in the lumbar spinal cord is not limited to conventional synapses but occurs by exocytosis of the dense-cored vesicles from axonal varicosities and acts by diffusion—a localized volume transmission—to reach oxytocin receptors on GRP neurons and facilitate male sexual function
Variation of pro‐vasopressin processing in parvocellular and magnocellular neurons in the paraventricular nucleus of the hypothalamus: Evidence from the vasopressin‐related glycopeptide copeptin
Arginine vasopressin (AVP) is synthesized in parvocellular‐ and magnocellular neuroendocrine neurons in the paraventricular nucleus (PVN) of the hypothalamus. Whereas magnocellular AVP neurons project primarily to the posterior pituitary, parvocellular AVP neurons project to the median eminence (ME) and to extrahypothalamic areas. The AVP gene encodes pre‐pro‐AVP that comprises the signal peptide, AVP, neurophysin (NPII), and a copeptin glycopeptide. In the present study, we used an N‐terminal copeptin antiserum to examine copeptin expression in magnocellular and parvocellular neurons in the hypothalamus in the mouse, rat, and macaque monkey. Although magnocellular NPII‐expressing neurons exhibited strong N‐terminal copeptin immunoreactivity in all three species, a great majority (~90%) of parvocellular neurons that expressed NPII was devoid of copeptin immunoreactivity in the mouse, and in approximately half (~53%) of them in the rat, whereas in monkey hypothalamus, virtually all NPII‐immunoreactive parvocellular neurons contained strong copeptin immunoreactivity. Immunoelectron microscopy in the mouse clearly showed copeptin‐immunoreactivity co‐localized with NPII‐immunoreactivity in neurosecretory vesicles in the internal layer of the ME and posterior pituitary, but not in the external layer of the ME. Intracerebroventricular administration of a prohormone convertase inhibitor, hexa‐d‐arginine amide resulted in a marked reduction of copeptin‐immunoreactivity in the NPII‐immunoreactive magnocellular PVN neurons in the mouse, suggesting that low protease activity and incomplete processing of pro‐AVP could explain the disproportionally low levels of N‐terminal copeptin expression in rodent AVP (NPII)‐expressing parvocellular neurons. Physiologic and phylogenetic aspects of copeptin expression among neuroendocrine neurons require further exploration
- …