21 research outputs found

    Novel Mechanisms Modulating Palmitate-Induced Inflammatory Factors in Hypertrophied 3T3-L1 Adipocytes by AMPK

    No full text
    Objective. A growing body of evidence indicates that AMP-activated protein kinase (AMPK) contributes to not only energy metabolic homeostasis but also the inhibition of inflammatory responses. However, the underlying mechanisms remain unclear. To elucidate the role of AMPK, in this study, we observed the effects of AMPK activation on monocyte chemoattractant protein-1 (MCP-1) release in mature 3T3-L1 adipocytes. Methods. We observed signal transduction pathways regulating MCP-1, which increased in obese adipocytes, in an in vitro model of hypertrophied 3T3-L1 adipocytes preloaded with palmitate. Results. Palmitate-preloaded cells exhibited significant increase in MCP-1 release and triglyceride (TG) deposition. Increased MCP-1 release and TG deposition were significantly decreased by an AMPK activator. In addition, the AMPK activator not only markedly diminished MCP-1 secretion but also augmented phosphorylation of nuclear factor-κB (NF-κB) and extracellular signal-regulated kinase (ERK) 1/2. In contrast, MCP-1 release suppression was abolished by the AMPK inhibitor compound C and the MEK inhibitor U0126. Conclusions. MCP-1 release from hypertrophied adipocytes is suppressed by AMPK activation through the NF-κB and ERK pathways. These findings provide evidence that AMPK plays a crucial role in ameliorating obesity-induced inflammation

    Low-energy and very-low energy total cross sections for electron collisions with N

    No full text
    Absolute grand total cross sections for electron scattering from N2 are obtained in the energy range from 20 eV down to 5 meV with very narrow electron energy width of 9 meV using the threshold-photoelectron source. Total cross sections obtained in the present study are compared with the previous experimentally obtained results. At the very-low energy region below 50 meV, the present total cross sections are somewhat smaller than those reported by the Aarhus group [S.V. Hoffmann et al., Rev. Sci. Instrum. 73, 4157 (2002)], which has been the only experimental work that provided the total cross sections in the very-low energy region. The energy positions of the peaks in the total cross sections due to the 2Πg shape resonance are obtained with higher accuracy, due to the improved uncertainty of the energy position in the present measurement compared to the previous works. The resonance structure in the total cross sections due to the Feshbach resonances of N2 at around 11.5 eV are also observed. Analysis of the resonant structure was carried out in order to determine the values of resonance width of Feshbach resonances of N2

    Coexistence of Metabolic Dysfunction‐Associated Fatty Liver Disease and Chronic Kidney Disease Is a More Potent Risk Factor for Ischemic Heart Disease

    No full text
    Background Metabolic dysfunction–associated fatty liver disease (MAFLD), defined as fatty liver with overweight/obesity, type 2 diabetes, or metabolic abnormalities, is a newly proposed disease. However, it remains unclear whether the coexistence of MAFLD and chronic kidney disease (CKD) is a more potent risk factor for ischemic heart disease (IHD). Methods and Results We investigated the risk of the combination of MAFLD and CKD for development of IHD during a 10‐year follow‐up period in 28 990 Japanese subjects who received annual health examinations. After exclusion of subjects without data for abdominal ultrasonography or with the presence of IHD at baseline, a total of 14 141 subjects (men/women: 9195/4946; mean age, 48 years) were recruited. During the 10‐year period (mean, 6.9 years), 479 subjects (men/women, 397/82) had new onset of IHD. Kaplan–Meier survival curves showed significant differences in rates of the cumulative incidence of IHD in subjects with and those without MAFLD (n=4581) and CKD (n=990; stages 1/2/3/4–5, 198/398/375/19). Multivariable Cox proportional hazard model analyses showed that coexistence of MAFLD and CKD, but not MAFLD or CKD alone, was an independent predictor for development of IHD after adjustment for age, sex, current smoking habit, family history of IHD, overweight/obesity, diabetes, hypertension, and dyslipidemia (hazard ratio, 1.51 [95% CI, 1.02–2.22]). The addition of the combination of MAFLD and CKD to traditional risk factors for IHD significantly improved the discriminatory capability. Conclusions The coexistence of MAFLD and CKD predicts new onset of IHD better than does MAFLD or CKD alone

    The Novel Mechanisms Concerning the Inhibitions of Palmitate-Induced Proinflammatory Factor Releases and Endogenous Cellular Stress with Astaxanthin on MIN6 β-Cells

    No full text
    Astaxanthin, an antioxidant agent, can protect pancreatic β-cells of db/db mice from glucotoxicity and resolve chronic inflammation in adipose tissue. Nonetheless, the effects of astaxanthin on free-fatty-acid-induced inflammation and cellular stress in β-cells remain to be demonstrated. Meanwhile, palmitate enhances the secretion of pro-inflammatory adipokines monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF120). We therefore investigated the influence of astaxanthin on palmitate-stimulated MCP-1 and VEGF120 secretion in mouse insulinoma (MIN6) pancreatic β-cells. Furthermore, whether astaxanthin prevents cellular stress in MIN6 cells was also assessed. Pre-treatment with astaxanthin or with N-acetyl-cysteine (NAC) which is an antioxidant drug, significantly attenuated the palmitate-induced MCP-1 release through downregulation of phosphorylated c-Jun NH2-terminal protein kinase (JNK) pathways, and suppressed VEGF120 through the PI3K/Akt pathways relative to the cells stimulated with palmitate alone. In addition, palmitate significantly upregulated homologous protein (CHOP) and anti-glucose-regulated protein (GRP78), which are endoplasmic reticulum (ER) stress markers, in MIN6 cells. On the other hand, astaxanthin attenuated the increased CHOP content, but further up-regulated palmitate-stimulated GRP78 protein expression. By contrast, NAC had no effects on either CHOP or GRP78 enhancement induced by palmitate in MIN6 cells. In conclusion, astaxanthin diminishes the palmitate-stimulated increase in MCP-1 secretion via the downregulation of JNK pathways in MIN6 cells, and affects VEGF120 secretion through PI3K/Akt pathways. Moreover, astaxanthin can prevent not only oxidative stress caused endogenously by palmitate but also ER stress, which NAC fails to attenuate, via upregulation of GRP78, an ER chaperon
    corecore