219 research outputs found

    Wide-field quantitative magnetic imaging of superconducting vortices using perfectly aligned quantum sensors

    Full text link
    Various techniques have been applied to visualize superconducting vortices, providing clues to their electromagnetic response. Here, we present a wide-field, quantitative imaging of the stray field of the vortices in a superconducting thin film using perfectly aligned diamond quantum sensors. Our analysis, which mitigates the influence of the sensor inhomogeneities, visualizes the magnetic flux of single vortices in YBa2_2Cu3_3O7δ_{7-\delta} with an accuracy of ±10 %\pm10~\%. The obtained vortex shape is consistent with the theoretical model, and penetration depth and its temperature dependence agree with previous studies, proving our technique's accuracy and broad applicability. This wide-field imaging, which in principle works even under extreme conditions, allows the characterization of various superconductors

    依存症者をめぐる責任実践:反応的態度のもつ問題点と自己理解の重要性

    Get PDF

    非難とゆるし:非難の関係性説に基づくゆるしの理論の探求

    Get PDF

    アンジェラ・スミスの非難の抗議説について

    Get PDF

    What is the Nature of Blame: A Review of Blame: Its Nature and Norms (2)

    Get PDF

    Vector form factor in K_l3 semileptonic decay with two flavors of dynamical domain-wall quarks

    Get PDF
    We calculate the vector form factor in K \to \pi l \nu semileptonic decays at zero momentum transfer f_+(0) from numerical simulations of two-flavor QCD on the lattice. Our simulations are carried out on 16^3 \times 32 at a lattice spacing of a \simeq 0.12 fm using a combination of the DBW2 gauge and the domain-wall quark actions, which possesses excellent chiral symmetry even at finite lattice spacings. The size of fifth dimension is set to L_s=12, which leads to a residual quark mass of a few MeV. Through a set of double ratios of correlation functions, the form factor calculated on the lattice is accurately interpolated to zero momentum transfer, and then is extrapolated to the physical quark mass. We obtain f_+(0)=0.968(9)(6), where the first error is statistical and the second is the systematic error due to the chiral extrapolation. Previous estimates based on a phenomenological model and chiral perturbation theory are consistent with our result. Combining with an average of the decay rate from recent experiments, our estimate of f_+(0) leads to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V_{us}|=0.2245(27), which is consistent with CKM unitarity. These estimates of f_+(0) and |V_{us}| are subject to systematic uncertainties due to the finite lattice spacing and quenching of strange quarks, though nice consistency in f_+(0) with previous lattice calculations suggests that these errors are not large.Comment: 23 pages, 11 figures, 7 tables, RevTeX4; v3: one table added, results and conclusions unchanged, final version to appear in Phys.Rev.
    corecore