951 research outputs found
Surgical management of aortic root disease in Marfan syndrome and other congenital disorders associated with aortic root aneurysms
Elective root replacement in Marfan syndrome has improved life expectancy in affected patients. Three forms of surgery are now available: total root replacement (TRR) with a valved conduit, valve sparing root replacement (VSRR) and personalised external aortic root support (PEARS) with a macroporous mesh sleeve. TRR can be performed irrespective of aortic dimensions and a mechanical replacement valve is a secure and near certain means of correcting aortic valve regurgitation but has thromboembolic and bleeding risks. VSRR offers freedom from anticoagulation and attendant risks of bleeding but reoperation for aortic regurgitation runs at 1.3% per annum. A prospective multi-institutional study has found this to be an underestimate of the true rate of valve-related adverse events. PEARS conserves the aortic root anatomy and optimises the chance of maintaining valve function but average follow-up is under 5 years and so the long-term results are yet to be determined. Patients are on average in their 30s and so the cumulative lifetime need for reoperation, and of any valve-related complications, are consequently substantial. With lowering surgical risk of prophylactic root replacement, the threshold for intervention has reduced progressively over 30 years to 4.5 cm and so an increasing number of patients who are not destined to have a dissection are now having root replacement. In evaluation of these three forms of surgery, the number needed to treat to prevent dissection and the balance of net benefit and harm in future patients must be considered
Improved Dynamic Predictions from Joint Models of Longitudinal and Survival Data with Time-Varying Effects using P-splines
In the field of cardio-thoracic surgery, valve function is monitored over
time after surgery. The motivation for our research comes from a study which
includes patients who received a human tissue valve in the aortic position.
These patients are followed prospectively over time by standardized
echocardiographic assessment of valve function. Loss of follow-up could be
caused by valve intervention or the death of the patient. One of the main
characteristics of the human valve is that its durability is limited.
Therefore, it is of interest to obtain a prognostic model in order for the
physicians to scan trends in valve function over time and plan their next
intervention, accounting for the characteristics of the data.
Several authors have focused on deriving predictions under the standard joint
modeling of longitudinal and survival data framework that assumes a constant
effect for the coefficient that links the longitudinal and survival outcomes.
However, in our case this may be a restrictive assumption. Since the valve
degenerates, the association between the biomarker with survival may change
over time.
To improve dynamic predictions we propose a Bayesian joint model that allows
a time-varying coefficient to link the longitudinal and the survival processes,
using P-splines. We evaluate the performance of the model in terms of
discrimination and calibration, while accounting for censoring
Dynamic Predictions with Time-Dependent Covariates in Survival Analysis using Joint Modeling and Landmarking
A key question in clinical practice is accurate prediction of patient
prognosis. To this end, nowadays, physicians have at their disposal a variety
of tests and biomarkers to aid them in optimizing medical care. These tests are
often performed on a regular basis in order to closely follow the progression
of the disease. In this setting it is of medical interest to optimally utilize
the recorded information and provide medically-relevant summary measures, such
as survival probabilities, that will aid in decision making. In this work we
present and compare two statistical techniques that provide dynamically-updated
estimates of survival probabilities, namely landmark analysis and joint models
for longitudinal and time-to-event data. Special attention is given to the
functional form linking the longitudinal and event time processes, and to
measures of discrimination and calibration in the context of dynamic
prediction.Comment: 34 pages, 4 figures. arXiv admin note: substantial text overlap with
arXiv:1303.279
Surgical management of aortic root disease in Marfan syndrome and other congenital disorders associated with aortic root aneurysms
Elective root replacement in Marfan syndrome has improved life expectancy in affected patients. Three forms of surgery are now available: total root replacement (TRR) with a valved conduit, valve sparing root replacement (VSRR) and personalised external aortic root support (PEARS) with a macroporous mesh sleeve. TRR can be performed irrespective of aortic dimensions and a mechanical replacement valve is a secure and near certain means of correcting aortic valve regurgitation but has thromboembolic and bleeding risks. VSRR offers freedom from anticoagulation and attendant risks of bleeding but reoperation for aortic regurgitation runs at 1.3% per annum. A prospective multi-institutional study has found this to be an underestimate of the true rate of valve-related adverse events. PEARS conserves the aortic root anatomy and optimises the chance of maintaining valve function but average follow-up is under 5 years and so the long-term results are yet to be determined. Patients are on average in their 30s and so the cumulative lifetime need for reoperation, and of any valve-related complications, are consequently substantial. With lowering surgical risk of prophylactic root replacement, the threshold for intervention has reduced progressively over 30 years to 4.5 cm and so an increasing number of patients who are not destined to have a dissection are now having root replacement. In evaluation of these three forms of surgery, the number needed to treat to prevent dissection and the balance of net benefit and harm in future patients must be considered
- …