21 research outputs found
Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin
Single-layered epithelia are the first differentiated cell types to develop in the embryo, with columnar and squamous types appearing immediately after blastocyst implantation. Here, we show that mouse embryonic stem cells seeded on hensin or laminin, but not fibronectin or collagen type IV, formed hemispheric epithelial structures whose outermost layer terminally differentiated to an epithelium that resembled the visceral endoderm. Hensin induced columnar epithelia, whereas laminin formed squamous epithelia. At the egg cylinder stage, the distal visceral endoderm is columnar, and these cells begin to migrate anteriorly to create the anterior visceral endoderm, which assumes a squamous shape. Hensin expression coincided with the dynamic appearance and disappearance of columnar cells at the egg cylinder stage of the embryo. These expression patterns, and the fact that hensin null embryos (and those already reported for laminin) die at the onset of egg cylinder formation, support the view that hensin and laminin are required for terminal differentiation of columnar and squamous epithelial phenotypes during early embryogenesis
Site-Specific Fracture Healing: Comparison between Diaphysis and Metaphysis in the Mouse Long Bone
The process of fracture healing varies depending upon internal and external factors, such as the fracture site, mode of injury, and mechanical environment. This review focuses on site-specific fracture healing, particularly diaphyseal and metaphyseal healing in mouse long bones. Diaphyseal fractures heal by forming the periosteal and medullary callus, whereas metaphyseal fractures heal by forming the medullary callus. Bone healing in ovariectomized mice is accompanied by a decrease in the medullary callus formation both in the diaphysis and metaphysis. Administration of estrogen after fracture significantly recovers the decrease in diaphyseal healing but fails to recover the metaphyseal healing. Thus, the two bones show different osteogenic potentials after fracture in ovariectomized mice. This difference may be attributed to the heterogeneity of the skeletal stem cells (SSCs)/osteoblast progenitors of the two bones. The Hox genes that specify the patterning of the mammalian skeleton during embryogenesis are upregulated during the diaphyseal healing. Hox genes positively regulate the differentiation of osteoblasts from SSCs in vitro. During bone grafting, the SSCs in the donor’s bone express Hox with adaptability in the heterologous bone. These novel functions of the Hox genes are discussed herein with reference to the site-specificity of fracture healing
The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone
Osteoclasts form a specialized cell–matrix adhesion structure, known as the “sealing zone”, during bone resorption. The sealing zone is a dynamic actin-rich structure that defines the resorption area of the bone. The detailed dynamics and fine structure of the sealing zone have been elusive. Osteoclasts plated on glass do not form a sealing zone, but generate a separate supra-molecular structure called the “podosome belt”. Podosomes are integrin-based adhesion complexes involved in matrix adhesion, cell migration, matrix degradation, and mechanosensing. Invadopodia, podosome-like protrusions in cancer cells, are involved in cell invasion into other tissues by promoting matrix degradation. Both podosomes and invadopodia exhibit actin pattern transitions during maturation. We previously found that Arp2/3-dependent actin flow occurs in all observed assembly patterns of podosomes in osteoclasts on glass. It is known that the actin wave in Dictyostelium cells exhibits a similar pattern transition in its evolution. Because of significant advances in our understanding regarding the mechanism of podosomes/invadopodia formation over the last decade, we revisited the structure and function of the sealing zone in this review, highlighting the possible involvement of self-organized actin waves in the organogenesis of the sealing zone
Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion
The aim of this study was to elucidate the role of the zipper-like structure (ZLS), a podosome-related structure that transiently appears at the cell contact zone, in osteoclast fusion. Live-cell imaging of osteoclasts derived from RAW264.7 cells transfected with EGFP-actin revealed consistent symmetrical retrograde actin flow in the ZLS, but not in the podosome cluster, the podosome ring or the podosome belt. Confocal imaging showed that the distributions of F-actin, vinculin, paxillin and zyxin in the ZLS were different from those in the podosome belt. Thick actin filament bundles running outside the ZLS appeared to recruit non-muscle myosin IIA. The F-actin-rich domain of the ZLS contained actin-related protein 2/3 complex (Arp2/3). Inhibition of Arp2/3 activity disorganized the ZLS, disrupted actin flow, deteriorated cell-cell adhesion and inhibited osteoclast hypermultinucleation. In contrast, ML-7, an inhibitor of myosin light chain kinase, had little effect on the structure of ZLS and promoted osteoclast hypermultinucleation. These results reveal a link between actin flow in the ZLS and osteoclast fusion. Osteoclast fusion was promoted by branched actin elongation and negatively regulated by actomyosin contraction