1,331 research outputs found
Low-temperature electrical resistivity in paramagnetic spinel LiV2O4
The 3d electron spinel compound LiV2O4 exhibits heavy fermion behaviour below
30K which is related to antiferromagnetic spin fluctuations strongly enhanced
in an extended region of momentum space. This mechanism explains enhanced
thermodynamic quantities and nearly critical NMR relaxation in the framework of
the selfconsistent renormalization (SCR) theory. Here we show that the low-T
Fermi liquid behaviour of the resistivity and a deviation from this behavior
for higher T may also be understood within that context. We calculate the
temperature dependence of the electrical resistivity \rho(T) assuming that two
basic mechanisms of the quasiparticle scattering, resulting from impurities and
spin-fluctuations, operate simultaneously at low temperature. The calculation
is based on the variational principle in the form of a perturbative series
expansion for \rho(T). A peculiar behavior of \rho(T) in LiV2O4 is related to
properties of low-energy spin fluctuations whose T-dependence is obtained from
SCR theory.Comment: 10 pages, 3 figures, to appear in Phys. Rev.
Strong-coupling theory of superconductivity in a degenerate Hubbard model
In order to discuss superconductivity in orbital degenerate systems, a
microscopic Hamiltonian is introduced. Based on the degenerate model, a
strong-coupling theory of superconductivity is developed within the fluctuation
exchange (FLEX) approximation where spin and orbital fluctuations, spectra of
electron, and superconducting gap function are self-consistently determined.
Applying the FLEX approximation to the orbital degenerate model, it is shown
that the -wave superconducting phase is induced by increasing the
orbital splitting energy which leads to the development and suppression of the
spin and orbital fluctuations, respectively. It is proposed that the orbital
splitting energy is a controlling parameter changing from the paramagnetic to
the antiferromagnetic phase with the -wave superconducting phase
in between.Comment: 4 figures, submitted to PR
Spin Fluctuation Induced Superconductivity Controlled by Orbital Fluctuation
A microscopic Hamiltonian reflecting the correct symmetry of -orbitals is
proposed to discuss superconductivity in heavy fermion systems. In the
orbitally degenerate region in which not only spin fluctuations but also
orbital fluctuations develop considerably, cancellation between spin and
orbital fluctuations destabilizes -wave superconductivity.
Entering the non-degenerate region by increasing the crystalline electric
field, -wave superconductivity mediated by antiferromagnetic
spin fluctuations emerges out of the suppression of orbital fluctuations. We
argue that the present scenario can be applied to recently discovered
superconductors CeTIn (T=Ir, Rh, and Co).Comment: 4 pages, 3 figure
Toward Construction of Exact Operator Solution of -Toda Field Theory
Quantum -Toda field theory in two dimensions is investigated based on
the method of quantizing canonical free field. Toda exponential operator
associated with the fundamental weight is constructed.Comment: 11 pages, latex, no figure
Multipole correlations in low-dimensional f-electron systems
By using a density matrix renormalization group method, we investigate the
ground-state properties of a one-dimensional three-orbital Hubbard model on the
basis of a j-j coupling scheme. For , where is a parameter
to control cubic crystalline electric field effect, one orbital is itinerant,
while other two are localized. Due to the competition between itinerant and
localized natures, we obtain orbital ordering pattern which is sensitive to
, leading to a characteristic change of quadrupole state
into an incommensurate structure. At , all the three orbitals are
degenerate, but we observe a peak at in quadrupole
correlation, indicating a ferro-orbital state, and the peak at in
dipole correlation, suggesting an antiferromagnetic state. We
also discuss the effect of octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29,
2005, Tokai
Spin fluctuations probed by NMR in paramagnetic spinel LiVO: a self-consistent renormalization theory
Low frequency spin fluctuation dynamics in paramagnetic spinel LiVO,
a rare 3-electron heavy fermion system, is investigated. A parametrized
self-consistent renormalization (SCR) theory of the dominant AFM spin
fluctuations is developed and applied to describe temperature and pressure
dependences of the low- nuclear spin-lattice relaxation rate in this
material. The experimental data for available down to K are
well reproduced by the SCR theory, showing the development of AFM spin
fluctuations as the paramagnetic metal approaches a magnetic instability under
the applied pressure. The low- upturn of detected below 0.6 K under
the highest applied pressure of 4.74 GPa is explained as the nuclear spin
relaxation effect due to the spin freezing of magnetic defects unavoidably
present in the measured sample of LiVO.Comment: 11 pages, 2 figure
Electronic states and pairing symmetry in the two-dimensional 16 band d-p model for iron-based superconductor
The electronic states of the FeAs plane in iron-based superconductors are
investigated on the basis of the two-dimensional 16-band d-p model, where the
tight-binding parameters are determined so as to fit the band structure
obtained by the density functional calculation for LaFeAsO. The model includes
the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms
U and U', the exchange coupling J and the pair-transfer J'. Within the random
phase approximation (RPA), we discuss the pairing symmetry of possible
superconducting states including s-wave and d-wave pairing on the U'-J plane.Comment: 2 pages, 4 figures; Proceedings of the Int. Symposium on
Fe-Oxipnictide Superconductors (Tokyo, 28-29th June 2008
- …