1,331 research outputs found

    Low-temperature electrical resistivity in paramagnetic spinel LiV2O4

    Full text link
    The 3d electron spinel compound LiV2O4 exhibits heavy fermion behaviour below 30K which is related to antiferromagnetic spin fluctuations strongly enhanced in an extended region of momentum space. This mechanism explains enhanced thermodynamic quantities and nearly critical NMR relaxation in the framework of the selfconsistent renormalization (SCR) theory. Here we show that the low-T Fermi liquid behaviour of the resistivity and a deviation from this behavior for higher T may also be understood within that context. We calculate the temperature dependence of the electrical resistivity \rho(T) assuming that two basic mechanisms of the quasiparticle scattering, resulting from impurities and spin-fluctuations, operate simultaneously at low temperature. The calculation is based on the variational principle in the form of a perturbative series expansion for \rho(T). A peculiar behavior of \rho(T) in LiV2O4 is related to properties of low-energy spin fluctuations whose T-dependence is obtained from SCR theory.Comment: 10 pages, 3 figures, to appear in Phys. Rev.

    Strong-coupling theory of superconductivity in a degenerate Hubbard model

    Full text link
    In order to discuss superconductivity in orbital degenerate systems, a microscopic Hamiltonian is introduced. Based on the degenerate model, a strong-coupling theory of superconductivity is developed within the fluctuation exchange (FLEX) approximation where spin and orbital fluctuations, spectra of electron, and superconducting gap function are self-consistently determined. Applying the FLEX approximation to the orbital degenerate model, it is shown that the dx2−y2d_{x^2-y^2}-wave superconducting phase is induced by increasing the orbital splitting energy which leads to the development and suppression of the spin and orbital fluctuations, respectively. It is proposed that the orbital splitting energy is a controlling parameter changing from the paramagnetic to the antiferromagnetic phase with the dx2−y2d_{x^2-y^2}-wave superconducting phase in between.Comment: 4 figures, submitted to PR

    Spin Fluctuation Induced Superconductivity Controlled by Orbital Fluctuation

    Full text link
    A microscopic Hamiltonian reflecting the correct symmetry of ff-orbitals is proposed to discuss superconductivity in heavy fermion systems. In the orbitally degenerate region in which not only spin fluctuations but also orbital fluctuations develop considerably, cancellation between spin and orbital fluctuations destabilizes dx2−y2d_{x^{2}-y^{2}}-wave superconductivity. Entering the non-degenerate region by increasing the crystalline electric field, dx2−y2d_{x^{2}-y^{2}}-wave superconductivity mediated by antiferromagnetic spin fluctuations emerges out of the suppression of orbital fluctuations. We argue that the present scenario can be applied to recently discovered superconductors CeTIn5_{5} (T=Ir, Rh, and Co).Comment: 4 pages, 3 figure

    Toward Construction of Exact Operator Solution of ANA_N-Toda Field Theory

    Get PDF
    Quantum ANA_N-Toda field theory in two dimensions is investigated based on the method of quantizing canonical free field. Toda exponential operator associated with the fundamental weight λ1\lambda^1 is constructed.Comment: 11 pages, latex, no figure

    Multipole correlations in low-dimensional f-electron systems

    Full text link
    By using a density matrix renormalization group method, we investigate the ground-state properties of a one-dimensional three-orbital Hubbard model on the basis of a j-j coupling scheme. For B40≠0B_4^0 \ne 0, where B40B_4^0 is a parameter to control cubic crystalline electric field effect, one orbital is itinerant, while other two are localized. Due to the competition between itinerant and localized natures, we obtain orbital ordering pattern which is sensitive to B40B_4^0, leading to a characteristic change of Γ3g\Gamma_{3g} quadrupole state into an incommensurate structure. At B40=0B_4^0 = 0, all the three orbitals are degenerate, but we observe a peak at q=0q = 0 in Γ3g\Gamma_{3g} quadrupole correlation, indicating a ferro-orbital state, and the peak at q=πq = \pi in Γ4u\Gamma_{4u} dipole correlation, suggesting an antiferromagnetic state. We also discuss the effect of Γ4u\Gamma_{4u} octupole on magnetic anisotropy.Comment: 4 pages, 3 figures, Proceedings of ASR-WYP-2005 (September 27-29, 2005, Tokai

    Spin fluctuations probed by NMR in paramagnetic spinel LiV2_2O4_4: a self-consistent renormalization theory

    Full text link
    Low frequency spin fluctuation dynamics in paramagnetic spinel LiV2_2O4_4, a rare 3dd-electron heavy fermion system, is investigated. A parametrized self-consistent renormalization (SCR) theory of the dominant AFM spin fluctuations is developed and applied to describe temperature and pressure dependences of the low-TT nuclear spin-lattice relaxation rate 1/T11/T_1 in this material. The experimental data for 1/T11/T_1 available down to ∼1\sim 1K are well reproduced by the SCR theory, showing the development of AFM spin fluctuations as the paramagnetic metal approaches a magnetic instability under the applied pressure. The low-TT upturn of 1/T1T1/T_1T detected below 0.6 K under the highest applied pressure of 4.74 GPa is explained as the nuclear spin relaxation effect due to the spin freezing of magnetic defects unavoidably present in the measured sample of LiV2_2O4_4.Comment: 11 pages, 2 figure

    Electronic states and pairing symmetry in the two-dimensional 16 band d-p model for iron-based superconductor

    Full text link
    The electronic states of the FeAs plane in iron-based superconductors are investigated on the basis of the two-dimensional 16-band d-p model, where the tight-binding parameters are determined so as to fit the band structure obtained by the density functional calculation for LaFeAsO. The model includes the Coulomb interaction on a Fe site: the intra- and inter-orbital direct terms U and U', the exchange coupling J and the pair-transfer J'. Within the random phase approximation (RPA), we discuss the pairing symmetry of possible superconducting states including s-wave and d-wave pairing on the U'-J plane.Comment: 2 pages, 4 figures; Proceedings of the Int. Symposium on Fe-Oxipnictide Superconductors (Tokyo, 28-29th June 2008

    An auditory model of speaker size perception for voiced speech sounds

    Get PDF
    • …
    corecore