1,148 research outputs found

    Compensation of Effective Field in the Field-Induced Superconductor k-(BETS)2FeBr4 Observed by 77Se NMR

    Full text link
    We report results of 77Se NMR frequency shift in the normal state of the organic charge-transfer-salt k-(BETS)2FeBr4 which shows magnetic field-induced superconductivity (FISC). From a simple mean field analysis, we determined the field and the temperature dependences of the magnetization m_{pi} of the \pi conduction electrons on BETS molecules. We found that the Fe spins are antiferromagnetically coupled to the pi electrons and determined the exchange field to be J = -2.3T/mu_B. The exchange field from the fully saturated Fe moments (5 mu_B) is compensated by an external field of 12T. This is close to the central field of the FISC phase, consistent with the Jaccarino-Peter local field-compensation mechanism for FISC (Phys. Rev. Lett. 9, 290 (1962))

    Evidence of Double Phonon Excitations in ^{16}O + ^{208}Pb Reaction

    Full text link
    The fusion cross-sections for ^{16}O + ^{208}Pb, measured to high precision, enable the extraction of the distribution of fusion barriers. This shows a structure markedly different from the single-barrier which might be expected for fusion of two doubly-closed shell nuclei. The results of exact coupled channel calculations performed to understand the observations are presented. These calculations indicate that coupling to a double octupole phonon excited state in ^{208}Pb is necessary to explain the experimental barrier distributions.Comment: 6 pages, 2 figures, To be published in the Proceedings of the FUSION 97 Conference, South Durras, Australia, March 1997 (J. Phys. G

    NMR evidence for the persistence of spin-superlattice above the 1/8 magnetization plateau in SrCu2(BO3)2

    Full text link
    We present 11B NMR studies of the 2D frustrated dimer spin system SrCu2(BO3)2 in the field range 27-31 T covering the upper phase boundary of the 1/8 magnetization plateau, identified at 28.4 T. Our data provide a clear evidence that above 28.4 T the spin-superlattice of the 1/8 plateau is modified but does not melt even though the magnetization increases. Although this is precisely what is expected for a supersolid phase, the microscopic nature of this new phase is much more complex. We discuss the field-temperature phase diagram on the basis of our NMR data.Comment: 5 pages, 4 figures, published versio

    Fusion barrier distributions in systems with finite excitation energy

    Get PDF
    Eigen-channel approach to heavy-ion fusion reactions is exact only when the excitation energy of the intrinsic motion is zero. In order to take into account effects of finite excitation energy, we introduce an energy dependence to weight factors in the eigen-channel approximation. Using two channel problem, we show that the weight factors are slowly changing functions of incident energy. This suggests that the concept of the fusion barrier distribution still holds to a good approximation even when the excitation energy of the intrinsic motion is finite. A transition to the adiabatic tunneling, where the coupling leads to a static potential renormalization, is also discussed.Comment: 9 pages, 4 figures, Submitted to Physical Review

    Enhanced low-energy spin dynamics with diffusive character in the iron-based superconductor (La0.87Ca0.13)FePO: Analogy with high Tc cuprates (A short note)

    Full text link
    In a recent NMR investigation of the iron-based superconductor (La0.87Ca0.13)FePO [Phys. Rev. Lett. 101, 077006 (2008)] Y. Nakai et al. reported an anomalous behavior of the nuclear spin-lattice relaxation of 31P nuclei in the superconducting state: The relaxation rate 1/T1 strongly depends on the measurement frequency and its T dependence does not show the typical decrease expected for the superconducting state. In this short note, we point out that these two observations bear similarity with the situation is some of the high Tc cuprates.Comment: To appear in J. Phys. Soc. Jpn. (Short Note

    Heterogeneous spin state in the field-induced phase of volborthite as seen via 51V nuclear magnetic resonance

    Full text link
    We report results of 51V NMR in the field-induced phase of volborthite Cu3V2O7(OH)dot2H2O, a spin-1/2 antiferromagnet on a distorted kagome lattice. In magnetic fields above 4.5 T, two types of V sites with different spin-echo decay rates are observed. The hyperfine field at the fast decaying sites has a distribution, while it is more homogeneous at the slowly decaying sites. Our results indicate a heterogeneous state consisting of two spatially alternating Cu spin systems, one of which exhibits anomalous spin fluctuations contrasting with the other showing a conventional static order.Comment: 5 pages, 4 figure

    Radiation correction to astrophysical fusion reactions and the electron screening problem

    Get PDF
    We discuss the effect of electromagnetic environment on laboratory measurements of the nuclear fusion reactions of astrophysical interest. The radiation field is eliminated using the path integral formalism in order to obtain the influence functional, which we evaluate in the semi-classical approximation. We show that enhancement of the tunneling probability due to the radiation correction is extremely small and does not resolve the longstanding problem that the observed electron screening effect is significantly larger than theoretical predictions.Comment: 9 pages, 1 eps figure
    corecore