842 research outputs found

    Hall effect of quasi-hole gas in organic single-crystal transistors

    Full text link
    Hall effect is detected in organic field-effect transistors, using appropriately shaped rubrene (C42H28) single crystals. It turned out that inverse Hall coefficient, having a positive sign, is close to the amount of electric-field induced charge upon the hole accumulation. The presence of the normal Hall effect means that the electromagnetic character of the surface charge is not of hopping carriers but resembles that of a two-dimensional hole-gas system

    Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities

    Full text link
    We calculate the intersubband absorption linewidth in quantum wells (QWs) due to scattering by interface roughness, LO phonons, LA phonons, alloy disorder, and ionized impurities, and compare it with the transport energy broadening that corresponds to the transport relaxation time related to electron mobility. Numerical calculations for GaAs QWs clarify the different contributions of each individual scattering mechanism to absorption linewidth and transport broadening. Interface roughness scattering contributes about an order of magnitude more to linewidth than to transport broadening, because the contribution from the intrasubband scattering in the first excited subband is much larger than that in the ground subband. On the other hand, LO phonon scattering (at room temperature) and ionized impurity scattering contribute much less to linewidth than to transport broadening. LA phonon scattering makes comparable contributions to linewidth and transport broadening, and so does alloy disorder scattering. The combination of these contributions with significantly different characteristics makes the absolute values of linewidth and transport broadening very different, and leads to the apparent lack of correlation between them when a parameter, such as temperature or alloy composition, is changed. Our numerical calculations can quantitatively explain the previously reported experimental results.Comment: 17 pages, including 15 figure

    Superconducting Properties of MgB2 Bulk Materials Prepared by High Pressure Sintering

    Full text link
    High-density bulk materials of a newly discovered 40K intermetallic MgB2 superconductor were prepared by high pressure sintering. Superconducting transition with the onset temperature of 39K was confirmed by both magnetic and resistive measurements. Magnetization versus field (M-H) curve shows the behavior of a typical Type II superconductor and the lower critical field Hc1(0) estimated from M-H curve is 0.032T. The bulk sample shows good connection between grains and critical current density Jc estimated from the magnetization hysteresis using sample size was 2x104A/cm2 at 20K and 1T. Upper critical field Hc2(0) determined by extrapolating the onset of resistive transition and assuming a dirty limit is 18T.Comment: 3Pages PD
    • …
    corecore