429 research outputs found

    Characteristics of Kiso Ultra-Violet Excess Galaxies

    Get PDF
    We examined the general characteristics of the Kiso Ultra-violet Excess Galaxies (KUGs). We present for the first time the quantitative expressions for the criteria of the KUGs; the boundary color separating the KUGs from the non-KUGs is (B-V)_{T} = 0.74 and the KUG degrees of UV strength are found to correlate with the mean (B-V)_{T} colors. We investigate the nature of the KUGs, a sample of blue galaxy population, and show that (1) about a half of the KUGs are spiral galaxies with Sb to Scd, (2) the KUGs are biased to late-type galaxies and include early-type galaxies with young star populations, and (3) the KUGs are preferably found among less luminous galaxies with log L(B) < 10. The KUGs also contain the post-starburst galaxies, many of which are found among the blue galaxy population at intermediate redshifts. The analysis of the far-infrared data shows that a typical present-to-past star formation rate for a KUG is 0.4.Comment: Revised version of astro-ph/9706088, accepted manuscript for AJ; uuencoded gzip'ed tar'ed file containing 25 files; a manuscript (aasms4), 7 tables (aj_pt4), 17 PS figures; To be appeared in The Astronomical Journal, Vol. 114, No. 5 (1997 November issue

    Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation

    Get PDF
    Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation.BackgroundSeveral families have been described in which an A to G transition mutation at position 3243 (A3243G) of the mitochondrial DNA (mtDNA) is associated with focal and segmental glomerulosclerosis (FSGS). However, the prevalence, clinical features, and pathophysiology of FSGS carrying mtDNA mutations are largely undefined.MethodsAmong 11 biopsy-proven primary FSGS patients of unknown etiology, we examined seven FSGS patients to determine whether any of the clinical and pathological features of FSGS were associated with an A3243G mtDNA mutation. In four subjects in whom the A3243G mtDNA mutation was discovered in blood leukocytes, as well as in urine sediments, we retrospectively reviewed the medical records and re-evaluated the renal biopsy specimen using light and electron microscopy. We further screened the patient's family members for the presence and degree of heteroplasmy for this mtDNA mutation and obtained medical histories that were consistent with mitochondrial cytopathy.ResultsThe four individuals identified with the A3243G mtDNA mutation were female. Proteinuria was diagnosed in these individuals during a routine annual health checkup in their teenage years. None of the patients showed any symptoms related to mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode, whereas diabetes mellitus in two of the patients and a hearing disturbance in one patient became manifest within a 3- to 13-year follow-up period. Strict maternal transmitted inheritance was confirmed by pedigree studies in all of these patients. Steroid therapy was ineffective in all four patients. In two of these patients, renal function declined slowly to end-stage renal failure. Histologic examination of biopsy specimens revealed that glomeruli were not hypertrophied, while electron microscopic examination identified severely damaged, multinucleated podocytes containing extremely dysmorphic abnormal mitochondria in all patients.ConclusionsFSGS may belong to the spectrum of renal involvement in A3243G mtDNA mutation in humans. Severely injured podocytic changes containing abnormal mitochondria may explain the pathogenesis of FSGS in association with the A3243G mtDNA mutation

    Endogenous Secretory Receptor for Advanced Glycation Endproducts as a Novel Prognostic Marker in Chondrosarcoma

    Get PDF
    取得学位 : 博士(医学), 学位授与番号 : 医博甲第1880号 , 学位授与年月日 : 平成19年6月30日, 学位授与大学 : 金沢大学, 主査教授 : 大井 章史, 副査教授 : 中沼 安二 , 金子 周

    Engineered Nanogel Particles Enhance the Photoautotrophic Biosynthesis of Polyhydroxyalkanoate in Marine Photosynthetic Bacteria

    Get PDF
    Improving polyhydroxyalkanoate (PHA, a biodegradable plastic) production under photoautotrophic cultivation is challenging for sustainable bioproduction. In this study, we demonstrated the use of engineered nanogel particles to enhance PHA accumulation in the marine photosynthetic bacterium Rhodovulum sulfidophilum under photoautotrophic culture. We screened the effect of 13 engineered nanogel particles on the cell growth and PHA accumulation of R. sulfidophilum. The addition of anionic nanogel particles significantly enhanced PHA accumulation in R. sulfidophilum up to 157-fold compared to that without nanogel particles. By performing ¹³C tracer experiments and gas chromatography–mass spectrometry analysis, we confirmed that HCO₃⁻ was assimilated throughout the central carbon metabolism and that the accumulated PHA was indeed incorporated from HCO₃⁻. Our results indicate successful PHA production with the supplementation of engineered nanogel particles under photoautotrophic cultivation in R. sulfidophilum. Furthermore, the strategy of using engineered nanoparticles demonstrated in this study may be applicable to other microbial cell factories to produce other commodity metabolites

    Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage

    Get PDF
    BACKGROUND: Corynebacterium ulcerans can cause a diphtheria-like illness, especially when the bacterium is lysogenized with a tox gene-carrying bacteriophage that produces diphtheria toxin. Acquisition of toxigenicity upon phage lysogenization is a common feature of C. ulcerans and C. diphtheriae. However, because of a lack of C. ulcerans genome information, a detailed comparison of prophages has not been possible between these two clinically important and closely related bacterial species. RESULTS: We determined the whole genome sequence of the toxigenic C. ulcerans 0102 isolated in Japan. The genomic sequence showed a striking similarity with that of Corynebacterium pseudotuberculosis and, to a lesser extent, with that of C. diphtheriae. The 0102 genome contained three distinct prophages. One of these, ΦCULC0102-I, was a tox-positive prophage containing genes in the same structural order as for tox-positive C. diphtheriae prophages. However, the primary structures of the individual genes involved in the phage machinery showed little homology between the two counterparts. CONCLUSION: Taken together, these results suggest that the tox-positive prophage in this strain of C. ulcerans has a distinct origin from that of C. diphtheriae NCTC 13129

    MFG-E8 Regulates Angiogenesis in Cutaneous Wound Healing

    Get PDF
    Our research group recently demonstrated that pericytes are major sources of the secreted glycoprotein and integrin ligand lactadherin (MFG-E8) in B16 melanoma tumors, and that MFG-E8 promotes angiogenesis via enhanced PDGF–PDGFRβ signaling mediated by integrin–growth factor receptor crosstalk. However, sources of MFG-E8 and its possible roles in skin physiology are not well characterized. The objective of this study was to characterize the involvement of MFG-E8 in skin wound healing. In the dermis of normal murine and human skin, accumulations of MFG-E8 were found around CD31+ blood vessels, and MFG-E8 colocalized with PDGFRβ+, αSMA+, and NG2+ pericytes. MFG-E8 protein and mRNA levels were elevated in the dermis during full-thickness wound healing in mice. MFG-E8 was diffusely present in granulation tissue and was localized around blood vessels. Wound healing was delayed in MFG-E8 knockout mice, compared with the wild type, and myofibroblast and vessel numbers in wound areas were significantly reduced in knockout mice. Inhibition of MFG-E8 production with siRNA attenuated the formation of capillary-like structures in vitro. Expression of MFG-E8 in fibrous human granulation tissue with scant blood vessels was less than that in granulation tissue with many blood vessels. These findings suggest that MFG-E8 promotes cutaneous wound healing by enhancing angiogenesis

    Percutaneous nonviral delivery of hepatocyte growth factor in an osteotomy gap promotes bone repair in rabbits: a preliminary study.

    Get PDF
    金沢大学医薬保健研究域医学系Hepatocyte growth factor (HGF) was initially identified in cultured hepatocytes and subsequently reported to induce angiogenic, morphogenic, and antiapoptotic activity in various tissues. These properties suggest a potential influence of HGF on bone healing. We asked if gene transfer of human HGF (hHGF) into an osteotomy gap with a hemagglutinating virus of Japan-envelope (HVJ-E) vector promotes bone healing in rabbits. HVJ-E that contained either hHGF or control plasmid was percutaneously injected into the osteotomy gap of rabbit tibias on Day 14. The osteotomy gap was evaluated by radiography, pQCT, mechanical tests, and histology at Week 8. The expression of hHGF was evaluated by reverse transcriptase-polymerase chain reaction and immunohistochemistry at Week 3. Radiography, pQCT, and histology suggested the hHGF group had faster fracture healing. Mechanical tests demonstrated the hHGF group had greater mechanical strength. The injected tissues at 3 weeks expressed hHGF mRNA by reverse transcriptase-polymerase chain reaction. hHGF-positive immunohistochemical staining was observed in various cells at the osteotomy gap at Week 3. The data suggest delivery of hHGF plasmid into the osteotomy gap promotes fracture repair, and HGF could become a novel agent for fracture treatment.全文公開20091

    Intravenous bone marrow mononuclear cells transplantation in aged mice increases transcription of glucose transporter 1 and Na+/K+-ATPase at hippocampus followed by restored neurological functions

    Get PDF
    We recently reported that intravenous bone marrow mononuclear cell (BM-MNC) transplantation in stroke improves neurological function through improvement of cerebral metabolism. Cerebral metabolism is known to diminish with aging, and the reduction of metabolism is one of the presumed causes of neurological decline in the elderly. We report herein that transcription of glucose transporters, monocarboxylate transporters, and Na+/K+-ATPase is downregulated in the hippocampus of aged mice with impaired neurological functions. Intravenous BM-MNC transplantation in aged mice stimulated the transcription of glucose transporter 1 and Na+/K+-ATPase α1 followed by restoration of neurological function. As glucose transporters and Na+/K+-ATPases are closely related to cerebral metabolism and neurological function, our data indicate that BM-MNC transplantation in aged mice has the potential to restore neurological function by activating transcription of glucose transporter and Na+/K+-ATPase. Furthermore, our data indicate that changes in transcription of glucose transporter and Na+/K+-ATPase could be surrogate biomarkers for age-related neurological impairment as well as quantifying the efficacy of therapies
    corecore