370 research outputs found

    Stiffness modeling of robotic manipulator with gravity compensator

    Get PDF
    The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family

    High-Tc superconductivity in entirely end-bonded multi-walled carbon nanotubes

    Get PDF
    We report that entirely end-bonded multi-walled carbon nanotubes (MWNTs) can show superconductivity with the transition temperature Tc as high as 12K that is approximately 40-times larger than those reported in ropes of single-walled nanotubes. We find that emergence of this superconductivity is very sensitive to junction structures of Au electrode/MWNTs. This reveals that only MWNTs with optimal numbers of electrically activated shells, which are realized by the end-bonding, can allow the superconductivity due to inter shell effects.Comment: 5 page

    Transport Phenomena at a Critical Point -- Thermal Conduction in the Creutz Cellular Automaton --

    Full text link
    Nature of energy transport around a critical point is studied in the Creutz cellular automaton. Fourier heat law is confirmed to hold in this model by a direct measurement of heat flow under a temperature gradient. The thermal conductivity is carefully investigated near the phase transition by the use of the Kubo formula. As the result, the thermal conductivity is found to take a finite value at the critical point contrary to some previous works. Equal-time correlation of the heat flow is also analyzed by a mean-field type approximation to investigate the temperature dependence of thermal conductivity. A variant of the Creutz cellular automaton called the Q2R is also investigated and similar results are obtained.Comment: 27 pages including 14figure

    Generation of a time-bin Greenberger--Horne--Zeilinger state with an optical switch

    Full text link
    Multipartite entanglement is a critical resource in quantum information processing that exhibits much richer phenomenon and stronger correlations than in bipartite systems. This advantage is also reflected in its multi-user applications. Although many demonstrations have used photonic polarization qubits, polarization-mode dispersion confines the transmission of photonic polarization qubits through an optical fiber. Consequently, time-bin qubits have a particularly important role to play in quantum communication systems. Here, we generate a three-photon time-bin Greenberger-Horne-Zeilinger (GHZ) state using a 2 x 2 optical switch as a time-dependent beam splitter to entangle time-bin Bell states from a spontaneous parametric down-conversion source and a weak coherent pulse. To characterize the three-photon time-bin GHZ state, we performed measurement estimation, showed a violation of the Mermin inequality, and used quantum state tomography to fully reconstruct a density matrix, which shows a state fidelity exceeding 70%. We expect that our three-photon time-bin GHZ state can be used for long-distance multi-user quantum communication.Comment: 8 pages, 4 figures, 1 tabl

    Experimental Quantum Cryptography with Qutrits

    Full text link
    We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal index l +1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to the manuscrip
    corecore