29 research outputs found
合併症を有するB型大動脈解離に対するステントグラフト内挿術における腎動脈に対する治療戦略 : 多施設共同研究
Background: Management of abdominal branches associated with Stanford type B aortic dissection is controversial without definite criteria for therapy after thoracic endovascular aortic repair (TEVAR). This is in part due to lack of data on natural history related to branch vessels and their relationship with the dissection flap, true lumen, and false lumen. Purpose: To investigate the natural history of abdominal branches after TEVAR for type B aortic dissection and the relationship between renal artery anatomy and renal volume as a surrogate measure of perfusion. Materials and Methods: This study included patients who underwent TEVAR for complicated type B dissection from January 2012 to March 2017 at 20 centers. Abdominal aortic branches were classified with following features: patency, branch vessel origin, and presence of extension of the aortic dissection into a branch (pattern 1, supplied by the true lumen without branch dissection; pattern 2, supplied by the true lumen with branch dissection, etc). The branch artery patterns before TEVAR were compared with those of the last follow-up CT (mean interval, 19.7 months) for spontaneous healing. Patients with one kidney supplied by pattern 1 and the other kidney by a different pattern were identified, and kidney volumes over the course were compared by using a simple linear regression model. Results: Two hundred nine patients (mean age ± standard deviation, 66 years ± 13; 165 men and 44 women; median follow-up, 18 months) were included. Four hundred fifty-nine abdominal branches at the last follow-up were evaluable. Spontaneous healing of the dissected branch occurred in 63% (64 of 102) of pattern 2 branches. Regarding the other patterns, 6.5% (six of 93) of branches achieved spontaneous healing. In 79 patients, renal volumes decreased in kidneys with pattern 2 branches with more than 50% stenosis and branches supplied by the aortic false lumen (patterns 3 and 4) compared with contralateral kidneys supplied by pattern 1 (pattern 2 vs pattern 1: −16% ± 16 vs 0.10% ± 11, P = .002; patterns 3 and 4 vs pattern 1: −13% ± 14 vs 8.5% ± 14, P = .004). Conclusion: Spontaneous healing occurs more frequently in dissected branches arising from the true lumen than in other branch patterns. Renal artery branches supplied by the aortic false lumen or a persistently dissected artery with greater than 50% stenosis are associated with significantly greater kidney volume loss.博士(医学)・乙第1461号・令和2年6月30日Copyright © 2019 by authors and RSNA. This work is licensed under the Creative Commons Attribution International License (CC BY-NC-ND 4.0). https://creativecommons.org/licenses/by-nc-nd/4.0/
In vitro soft agar assay by use of multiplate for screening of tumor sensitivity to anticancer drugs
Constructing Partial Models of Cells
Understanding the origin of life requires knowledge not only of the origin of biological molecules such as amino acids, nucleotides and their polymers, but also the manner in which those molecules are integrated into the organized systems that characterize cellular life. In this article, we introduce a constructive approach to understand how biological molecules can be arranged to achieve a higher-order biological function: replication of genetic information
Key Proliferative Activity in the Junction between the Leaf Blade and Leaf Petiole of Arabidopsis1[W][OA]
Leaves are the most important, fundamental units of organogenesis in plants. Although the basic form of a leaf is clearly divided into the leaf blade and leaf petiole, no study has yet revealed how these are differentiated from a leaf primordium. We analyzed the spatiotemporal pattern of mitotic activity in leaf primordia of Arabidopsis (Arabidopsis thaliana) in detail using molecular markers in combination with clonal analysis. We found that the proliferative zone is established after a short interval following the occurrence of a rod-shaped early leaf primordium; it is separated spatially from the shoot apical meristem and seen at the junction region between the leaf blade and leaf petiole and produces both leaf-blade and leaf-petiole cells. This proliferative region in leaf primordia is marked by activity of the ANGUSTIFOLIA3 (AN3) promoter as a whole and seems to be differentiated into several spatial compartments: activities of the CYCLIN D4;2 promoter and SPATULA enhancer mark parts of it specifically. Detailed analyses of the an3 and blade-on-petiole mutations further support the idea that organogenesis of the leaf blade and leaf petiole is critically dependent on the correct spatial regulation of the proliferative region of leaf primordia. Thus, the proliferative zone of leaf primordia is spatially differentiated and supplies both the leaf-blade and leaf-petiole cells