33 research outputs found

    Regulation of NR4A nuclear receptors by p38

    Get PDF
    In Drosophila, the melanization reaction is an important defense mechanism against injury and invasion of microorganisms. Drosophila tyrosine hydroxylase (TH, also known as Pale) and dopa decarboxylase (Ddc), key enzymes in the dopamine synthesis pathway, underlie the melanin synthesis by providing the melanin precursors dopa and dopamine, respectively. It has been shown that expression of Drosophila TH and Ddc is induced in various physiological and pathological conditions, including bacterial challenge; however, the mechanism involved has not been fully elucidated. Here, we show that ectopic activation of p38 MAPK induces TH and Ddc expression, leading to upregulation of melanization in the Drosophila cuticle. This p38-dependent melanization was attenuated by knockdown of TH and Ddc, as well as by that of Drosophila HR38, a member of the NR4A family of nuclear receptors. In mammalian cells, p38 phosphorylated mammalian NR4As and Drosophila HR38 and potentiated these NR4As to transactivate a promoter containing NR4A-binding elements, with this transactivation being, at least in part, dependent on the phosphorylation. This suggests an evolutionarily conserved role for p38 MAPKs in the regulation of NR4As. Thus, p38-regulated gene induction through NR4As appears to function in the dopamine synthesis pathway and may be involved in immune and stress responses

    Improved long-term performance of pulsatile extracorporeal left ventricular assist device

    Get PDF
    SummaryBackground and purposeThe majority of heart transplant (HTx) candidates require left ventricular assist device (LVAD) support for more than 2 years before transplantation in Japan. However, the only currently available device is the extracorporeal pulsatile LVAD. The long-term management of extracorporeal LVAD support has improved remarkably over the years. To determine which post-operative management factors are related to the long-term survival of patients on such LVAD, we retrospectively compared the incidence of complications and their management strategies between the initial and recent eras of LVAD use, classified by the year of LVAD surgery.MethodsSixty-nine consecutive patients supported by extracorporeal pulsatile LVAD as a bridge to HTx between 1994 and 2007 were reviewed retrospectively. The patients were assigned according to the time of LVAD surgery to either group A (n=30; between 1994 and 2000) or group B (n=39; between 2001 and 2007).ResultsPatients in group B survived significantly longer on LVAD support than those in group A (674.6 vs. 369.3 days; p<0.001). The 1- and 2-year survival rates were significantly higher in group B than that in group A (82% vs. 48%, p<0.0001; 68% vs. 23%, p<0.0001, respectively). The proportion of deaths due to cerebrovascular accidents was lower (17% vs. 50%, p<0.001) in group B compared with group A. The incidences of systemic infection were similar in both groups, but the proportions of patients alive and achieving transplant surgery after systemic infection were higher in group B than those in group A (55% vs. 14%, p<0.01; 14% vs. 36%, p<0.05, respectively).ConclusionsThe long-term survival of patients even on “first-generation” extracorporeal LVAD has improved significantly in the recent era. Careful management of cerebrovascular accidents and systemic infection will play important roles in the long-term LVAD management

    SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression

    Get PDF
    臓器チップ技術を用いて新型コロナウイルスが血管へ侵入するメカニズムを解明 --Claudin-5発現抑制による呼吸器の血管内皮バリア破壊--. 京都大学プレスリリース. 2022-09-22.A study using an organ-on-a-chip reveals a mechanism of SARS-CoV-2 invasion into blood vessels --Disruption of vascular endothelial barrier in respiratory organs by decreasing Claudin-5 expression--. 京都大学プレスリリース. 2022-09-27.In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin–mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2–induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2–induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Involvements of Trp23 in the Chitin-binding and of Trp131 in the Chitinase Activity of Rye Seed Chitinase-a

    Full text link

    Identification of the Tryptophan Residue Located at the Substrate-binding Site of Rye Seed Chitinase-c

    Full text link

    Repair of pectus carinatum by a modified Ravitch technique combined with postoperative bracing

    Full text link
    A 13-year-old boy with pectus carinatum was successfully treated by modified Ravitch's techniques combined with short-term orthotic bracing. No sternal osteotomy and less extensive resection of costal cartilage were performed. This minimally invasive surgery is safely and effectively in pubertal patients with pectus carinatum. Keywords: Pectus carinatum, Modified Ravitch's techniques, Minimally invasive surger
    corecore