43 research outputs found

    Development and Performance of Kyoto's X-ray Astronomical SOI pixel (SOIPIX) sensor

    Full text link
    We have been developing monolithic active pixel sensors, known as Kyoto's X-ray SOIPIXs, based on the CMOS SOI (silicon-on-insulator) technology for next-generation X-ray astronomy satellites. The event trigger output function implemented in each pixel offers microsecond time resolution and enables reduction of the non-X-ray background that dominates the high X-ray energy band above 5--10 keV. A fully depleted SOI with a thick depletion layer and back illumination offers wide band coverage of 0.3--40 keV. Here, we report recent progress in the X-ray SOIPIX development. In this study, we achieved an energy resolution of 300~eV (FWHM) at 6~keV and a read-out noise of 33~e- (rms) in the frame readout mode, which allows us to clearly resolve Mn-Kα\alpha and Kβ\beta. Moreover, we produced a fully depleted layer with a thickness of 500 μm500~{\rm \mu m}. The event-driven readout mode has already been successfully demonstrated.Comment: 7pages, 12figures, SPIE Astronomical Telescopes and Instrumentation 2014, Montreal, Quebec, Canada. appears as Proc. SPIE 9147, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ra

    Specificities and Efficiencies of Primers Targeting Candidatus Phylum Saccharibacteria in Activated Sludge

    No full text
    Candidatus Saccharibacteria is a well-described candidate phylum that has not been successfully isolated. Nevertheless, its presence was suggested by 16S rRNA gene sequencing data, and it is frequently detected in natural environments and activated sludge. Because pure culture representatives of Candidatus Saccharibacteria are lacking, the specificity of primers for the determination of their abundance and diversity should be carefully evaluated. In this study, eight Candidatus Saccharibacteria-specific primers were selected from previous studies and evaluated for their coverage against a public database, annealing temperature of the combined primer sets, as well as their utilization to determine the detection frequencies and phylogenetic diversity by cloning analysis, and in quantification by quantitative polymerase chain reaction (PCR). Among the eight primers, four primers (TM7314F, TM7580F, TM7-910R, and TM7-1177R) showed high coverage. Cloning analysis showed that four primer sets (TM7314F and TM7-910R, TM7314F and TM7-1177R, TM7580F and TM7-910R, and TM7580F and TM7-1177R) yielded high detection frequencies for Candidatus Saccharibacteria in activated sludge from a wastewater treatment plant in Higashihiroshima City, Japan. Quantitative PCR results indicated that the primer set containing TM7314F and TM7-910R was superior for the specific detection of Candidatus Saccharibacteria in activated sludge

    Feasibility Study of Holography Using Microwave Scattering

    No full text
    Microwave, unlike visible light, can be measured directly on the phase of the wave. The measurement of complex amplitude suggests a possibility of holographic plasma imaging with a single view-field of planar array of detectors. In this paper, an inverse problem of holography is formulated with respect to reflection and scattering wave observations. Against the restricted view-field and few detectors, a solution of Tikhonov type is proposed and examined by numerical simulations. The first result of feasibility study is presented

    Specificities and Efficiencies of Primers Targeting Candidatus Phylum Saccharibacteria in Activated Sludge

    No full text
    Candidatus Saccharibacteria is a well-described candidate phylum that has not been successfully isolated. Nevertheless, its presence was suggested by 16S rRNA gene sequencing data, and it is frequently detected in natural environments and activated sludge. Because pure culture representatives of Candidatus Saccharibacteria are lacking, the specificity of primers for the determination of their abundance and diversity should be carefully evaluated. In this study, eight Candidatus Saccharibacteria-specific primers were selected from previous studies and evaluated for their coverage against a public database, annealing temperature of the combined primer sets, as well as their utilization to determine the detection frequencies and phylogenetic diversity by cloning analysis, and in quantification by quantitative polymerase chain reaction (PCR). Among the eight primers, four primers (TM7314F, TM7580F, TM7-910R, and TM7-1177R) showed high coverage. Cloning analysis showed that four primer sets (TM7314F and TM7-910R, TM7314F and TM7-1177R, TM7580F and TM7-910R, and TM7580F and TM7-1177R) yielded high detection frequencies for Candidatus Saccharibacteria in activated sludge from a wastewater treatment plant in Higashihiroshima City, Japan. Quantitative PCR results indicated that the primer set containing TM7314F and TM7-910R was superior for the specific detection of Candidatus Saccharibacteria in activated sludge
    corecore