3 research outputs found

    Phase separation of an actin nucleator by junctional microtubules regulates epithelial function

    Get PDF
    Liquid-liquid phase separation (LLPS) is involved in various dynamic biological phenomena. In epithelial cells, dynamic regulation of junctional actin filaments tethered to the apical junctional complex (AJC) is critical for maintaining internal homeostasis against external perturbations; however, the role of LLPS in this process remains unknown. Here, after identifying a multifunctional actin nucleator, cordon bleu (Cobl), as an AJC-enriched microtubule-associated protein, we conducted comprehensive in vitro and in vivo analyses. We found that apical microtubules promoted LLPS of Cobl at the AJC, and Cobl actin assembly activity increased upon LLPS. Thus, microtubules spatiotemporally regulated junctional actin assembly for epithelial morphogenesis and paracellular barriers. Collectively, these findings established that LLPS of the actin nucleator Cobl mediated dynamic microtubule-actin cross-talk in junctions, which fine-tuned the epithelial barrier

    Identification of Pannexins in Rat Nasal Mucosa

    No full text
    Pannexins are a second family of gap-junction proteins in vertebrates, classified as pannexin-1, pannexin-2, and pannexin-3. Pannexin-1 is one of the candidates for channel-mediated ATP release into the extracellular space. In airway epithelia, ATP signaling modulates multiple cellular functions such as mucus/ion secretion and mucociliary clearance systems. However, the expression of pannexins in the upper airway has not been investigated. Nasal septal mucosae were collected from adult male Wistar rats aged 20–24 weeks. The expression of pannexin-1, pannexin-2, and pannexin-3 was examined by reverse transcription polymerase chain reaction (RT-PCR) and by whole-mount fluorescence immunohistochemistry. Transcripts for pannexin-1, pannexin-2, and pannexin-3 were detected in nasal septal mucosae of adult rats by RT-PCR. Distinct immunohistochemical fluorescence for pannexin-1 was observed in the epithelial layer, whereas there was no immunoreactivity for pannexin-2 or pannexin-3. This is the first article establishing the existence of pannexins (predominantly pannexin-1) in the upper airway, suggesting their possible participation in the physiological functions of ATP release and signaling in this tissue
    corecore