7 research outputs found

    Tumour enhancement with newly developed Mn-metalloporphyrin (HOP-9P) in magnetic resonance imaging of mice

    Get PDF
    The purpose of the study is to evaluate the tumour enhancing characteristics and biodistribution of a newly developed metalloporphyrin derivative, HOP-9P (13, 17-bis (1-carboxypropionyl) carbamoylethyl-3, 8-bis (1-phenylpropyloxyethyl)-2,7,12,18-tetra- methyl-porphynato manganese (III)). Seven mice bearing SCC VII tumours were imaged using T1-weighted conventional spin echo magnetic resonance images before and 5 min, 2 h and 24 h after intravenous injection of 0.1 mmol/kg of HOP-9P. For the acquired images, signal intensities of the tumour, muscle and oil-phantom were measured. Then, tumor/oil and tumor/muscle signal intensity ratios were calculated. Nineteen mice were sacrificed before or after the administration of HOP-9P (at 5 min, 2 h and 24 h), and the biodistribution of manganese in the tumour, muscle, liver, blood and kidneys was measured using optical emission spectrometers and was expressed as micrograms of manganese per gram of tissue. The tumour/muscle signal intensity ratio at 24 h (3.18 ± 0.34) was significantly higher than precontrast ratio (1.77 ± 0.20) (P < 0.05). The biodistribution assessment of manganese demonstrated that HOP-9P gradually and consistently accumulated in the tumour to reach the highest concentration at 24 h (3.49 ± 1.22 μ gMn/g). It is concluded that HOP-9P is a potential tumour-specific MR contrast agent. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Hemodynamic Assessment of Celiaco-mesenteric Anastomosis in Patients with Pancreaticoduodenal Artery Aneurysm Concomitant with Celiac Artery Occlusion using Flow-sensitive Four-dimensional Magnetic Resonance Imaging

    Get PDF
    ObjectivesMany pancreaticoduodenal artery (PDA) aneurysms are associated with celiac artery (CA) stenosis. The pathogenesis of PDA aneurysm may be associated with hemodynamic changes due to CA stenosis/occlusion. The aim of this study was to assess the hemodynamic changes of celiaco-mesenteric anastomosis in patients with PDA aneurysms concomitant with CA occlusion using four-dimensional flow-sensitive magnetic resonance imaging (4D-Flow).Methods4D-Flow was performed preoperatively on five patients. Seven age- and sex-matched individuals were used as controls. Hemodynamic parameters such as flow volume and maximum flow velocity in PDAs, gastroduodenal arteries, common hepatic arteries, and superior mesenteric arteries were compared between both groups. Wall shear stress (WSS) and oscillatory shear index (OSI) were mapped in both groups.ResultsIn the patient group, 4D-Flow identified retrograde flow of both gastroduodenal arteries and common hepatic arteries. Heterogeneous distribution patterns of both WSS and OSI were identified across the entire PDA in the patient group. OSI mapping showed multiple regions with extremely high OSI values (OSI > 0.3) in all patients. All PDA aneurysms, which were surgically resected, were atherosclerotic.Conclusions4D-Flow identified hemodynamic changes in celiaco-mesenteric arteries in patients with PDA aneurysms with concomitant CA occlusion. These hemodynamic changes may be associated with PDA aneurysm formation

    Synthesis and evaluation of novel mri contrast agents of chemically modified GD-DTPA complexes with sugars

    No full text
    MRI is one of medical diagnostic imaging technologies that can draw the cross section in the body. To obtain a clearer image, Gd complexes are often used as MRI contrast agents. Gd-DTPA (Gd-Diethylenetriaminepentaacetate, Magnevist registered trademark ) is used in particular as the MRI contrast agents. We prepared and evaluated novel MRI contrast agents that were chemically modified Gd-DTPA with sugars (represented as Gd-DTPA-Sugar) via hydrolysis route for providing specificity to target organs and tissues. Gd-DTPASugar complex showed an excellent potential for the MRI contrast agent (r1=31.2 s-1mM-1). Gd-DTPA-Sugar complexes alternatively prepared by shorter synthetic route without protection/ deprotection (hydrolysis) method showed inferior results (r1=6.3 and 8.1 s-1mM-1) to the hydlized product

    R&D of novel medicinal materials for curing cancer: sugar modified Gd-DTPA MRI contrast agents and phospha sugar anti-cancer agents

    No full text
    Novel Sugar Dendritic Gd-DTPA Complexes for MRI Contrast Agents were prepared and evaluated by in vitro and in vivo methods. The sugar dendritic MRI contrast agents have a good blood vesse pool character, and draw blood vessels and liver cancer remarkably clearer than the clinically using Gd-DTPA. Phospha sugar derivatives or phosphorus heterocyclic derivatives provided by functional groups such as epoxide, bromide, etc., were prepared and evaluated by MTT in vitro method. These phospha sugar derivatives showed excellent activities against leukemia cells as well as solid cancer cells in fashions of (i) higher activity, (ii) wider spectra, (iii) higher selectivity and specificity distingushing healthy and cancer cells, etc., compared with the molecular targeting chemotheraputic anti-cancer agent, Gleevec
    corecore