10,488 research outputs found
Conservativeness of non-symmetric diffusion processes generated by perturbed divergence forms
Let E be an unbounded open (or closed) domain in Euclidean space of dimension
greater or equal to two. We present conservativeness criteria for (possibly
reflected) diffusions with state space E that are associated to fairly general
perturbed divergence form operators. Our main tool is a recently extended
forward and backward martingale decomposition, which reduces to the well-known
Lyons-Zheng decomposition in the symmetric case.Comment: Corrected typos, minor modification
Strong Resonance of Light in a Cantor Set
The propagation of an electromagnetic wave in a one-dimensional fractal
object, the Cantor set, is studied. The transfer matrix of the wave amplitude
is formulated and its renormalization transformation is analyzed. The focus is
on resonant states in the Cantor set. In Cantor sets of higher generations,
some of the resonant states closely approach the real axis of the wave number,
leaving between them a wide region free of resonant states. As a result, wide
regions of nearly total reflection appear with sharp peaks of the transmission
coefficient beside them. It is also revealed that the electromagnetic wave is
strongly enhanced and localized in the cavity of the Cantor set near the
resonant frequency. The enhancement factor of the wave amplitude at the
resonant frequency is approximately , where
is the imaginary part of the corresponding resonant
eigenvalue. For example, a resonant state of the lifetime
ms and of the enhancement factor is
found at the resonant frequency GHz for the Cantor set
of the fourth generation of length L=10cm made of a medium of the dielectric
constant .Comment: 20 pages, 11 figures, to be published in Journal of the Physical
Society of Japa
31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State
The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation)
measurements on the filled skutterudite system SmFe4P12 have been carried out.
The temperature T dependence of the 31P-NMR spectra indicates the existence of
the crystalline electric field effect splitting of the Sm3+$ (J = 5/2)
multiplet into a ground state and an excited state of about 70 K. The
spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo
system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion
to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T
dependence deviated from the Korringa behavior below 7 K, which is independent
of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher
fields. The behavior is explained as 1/T1is determined by ferromagnetic
fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons.
The muSR measurements in zero field show the appearance of a static internal
field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006
The intrinsic strangeness and charm of the nucleon using improved staggered fermions
We calculate the intrinsic strangeness of the nucleon, - ,
using the MILC library of improved staggered gauge configurations using the
Asqtad and HISQ actions. Additionally, we present a preliminary calculation of
the intrinsic charm of the nucleon using the HISQ action with dynamical charm.
The calculation is done with a method which incorporates features of both
commonly-used methods, the direct evaluation of the three-point function and
the application of the Feynman- Hellman theorem. We present an improvement on
this method that further reduces the statistical error, and check the result
from this hybrid method against the other two methods and find that they are
consistent. The values for and found here, together with
perturbative results for heavy quarks, show that dark matter scattering through
Higgs-like exchange receives roughly equal contributions from all heavy quark
flavors.Comment: 17 pages, 14 figure
The survival and destruction of X-ray coronae of early-type galaxies in the rich cluster environments: a case study of Abell 1367
A new Chandra observation of the northwest region of the galaxy cluster A1367
reveals four cool galaxy coronae (0.4 - 1.0 keV) embedded in the hot
intracluster medium (ICM) (5 - 6 keV). While the large coronae of NGC 3842 and
NGC 3837 appear symmetric and relaxed, the galaxy coronae of the \lsim L*
galaxies (NGC 3841 and CGCG 97090) are disturbed and being stripped. Massive
galaxies, with dense cooling cores, are better able to resist ram pressure
stripping and survive in rich environments than \lsim L* galaxies whose
galactic coronae are much less dense. The survival of these cool coronae
implies that thermal conduction from the hot surrounding ICM has to be
suppressed by a factor of at least 60, at the corona boundary. Within the
galaxy coronae of NGC 3842 and NGC 3837, stellar mass loss or heat conduction
with the Spitzer value may be sufficient to balance radiative cooling. Energy
deposition at the ends of collimated jets may heat the outer coronae, but allow
the survival of a small, dense gas core (e.g., NGC 3842 in A1367 and NGC 4874
in Coma). The survived X-ray coronae become significantly smaller and fainter
with the increasing ambient pressure.Comment: 11 pages, 7 figures, emulateapj5, accepted by Ap
Ultra-high energy cosmic rays threshold in Randers-Finsler space
Kinematics in Finsler space is used to study the propagation of ultra high
energy cosmic rays particles through the cosmic microwave background radiation.
We find that the GZK threshold is lifted dramatically in Randers-Finsler space.
A tiny deformation of spacetime from Minkowskian to Finslerian allows more
ultra-high energy cosmic rays particles arrive at the earth. It is suggested
that the lower bound of particle mass is related with the negative second
invariant speed in Randers-Finsler space
Charge-noise-free Lateral Quantum Dot Devices with Undoped Si/SiGe Wafer
We develop quantum dots in a single layered MOS structure using an undoped
Si/SiGe wafer. By applying a positive bias on the surface gates, electrons are
accumulated in the Si channel. Clear Coulomb diamond and double dot charge
stability diagrams are measured. The temporal fluctuation of the current is
traced, to which we apply the Fourier transform analysis. The power spectrum of
the noise signal is inversely proportional to the frequency, and is different
from the inversely quadratic behavior known for quantum dots made in doped
wafers. Our results indicate that the source of charge noise for the doped
wafers is related to the 2DEG dopant.Comment: Proceedings of the 12th Asia Pacific Physics Conferenc
Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations
We have simulated the classical Heisenberg antiferromagnet on a triangular
lattice using a local Monte Carlo algorithm. The behavior of the correlation
length , the susceptibility at the ordering wavevector , and
the spin stiffness clearly reflects the existence of two temperature
regimes -- a high temperature regime , in which the disordering
effect of vortices is dominant, and a low temperature regime ,
where correlations are controlled by small amplitude spin fluctuations. As has
previously been shown, in the last regime, the behavior of the above quantities
agrees well with the predictions of a renormalization group treatment of the
appropriate nonlinear sigma model. For , a satisfactory fit of the
data is achieved, if the temperature dependence of and is
assumed to be of the form predicted by the Kosterlitz--Thouless theory.
Surprisingly, the crossover between the two regimes appears to happen in a very
narrow temperature interval around .Comment: 13 pages, 8 Postscript figure
- …