14,627 research outputs found

    Conservativeness of non-symmetric diffusion processes generated by perturbed divergence forms

    Full text link
    Let E be an unbounded open (or closed) domain in Euclidean space of dimension greater or equal to two. We present conservativeness criteria for (possibly reflected) diffusions with state space E that are associated to fairly general perturbed divergence form operators. Our main tool is a recently extended forward and backward martingale decomposition, which reduces to the well-known Lyons-Zheng decomposition in the symmetric case.Comment: Corrected typos, minor modification

    Anomalous low temperature state of CeOs4Sb12: Magnetic field and La-impurity study

    Full text link
    Specific heat for single crystalline samples of Ce1-xLaxOs4Sb12 at zero-field and magnetic fields to 14 T is reported. Our results confirm enhanced value of the electronic specific heat coefficient in the paramagnetic state. They provide arguments for the intrinsic origin of the 1.1 K anomaly. This transition leads to opening of the gap at the Fermi surface. This low temperature state of CeOs4Sb12 is extremely sensitive to chemical impurities. 2% of La substituted for Ce suppresses the transition and reduces the electronic specific heat coefficient. The magnetic field response of the specific heat is also anomalous.Comment: 4 pages, 3 figure

    Probing the parameter space of HD 49933: a comparison between global and local methods

    Full text link
    We present two independent methods for studying the global stellar parameter space (mass M, age, initial chemical composition X_0, Z_0) of HD 49933 with seismic data. Using a local minimization and an MCMC algorithm, we obtain consistent results for the determination of the stellar properties: M = 1.1 - 1.2 M_solar, Age ~ 3.0 Gyr, Z_0 ~ 0.008. A description of the error ellipses can be defined using Singular Value Decomposition techniques, and this is validated by comparing the errors with those from the MCMC method.Comment: to be published in JPC

    The Amino Terminus of the Yeast F_1-ATPase β-Subunit Precursor Functions as a Mitochondrial Import Signal

    Get PDF
    The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (which codes for invertase). The ATP2-lacZ and ATP2-SUC2 gene fusions code for hybrid proteins that are efficiently targeted to yeast mitochondria in vivo. The mitochondrially associated hybrid proteins fractionate with the inner mitochondrial membrane and are resistant to proteinase digestion in the isolated organelle. Results obtained with the gene fusions and with targeting-defective ATP2 deletion mutants provide evidence that the amino-terminal 27 amino acids of the beta-subunit protein precursor are sufficient to direct both specific sorting of this protein to yeast mitochondria and its import into the organelle. Also, we have observed that certain of the mitochondrially associated Atp2-LacZ and Atp2-Suc2 hybrid proteins confer a novel respiration-defective phenotype to yeast cells

    Abundance Analysis of Planetary Host Stars I. Differential Iron Abundances

    Full text link
    We present atmospheric parameters and iron abundances derived from high-resolution spectra for three samples of dwarf stars: stars which are known to host close-in giant planets (CGP), stars for which radial velocity data exclude the presence of a close-in giant planetary companion (no-CGP), as well as a random sample of dwarfs with a spectral type and magnitude distribution similar to that of the planetary host stars (control). All stars have been observed with the same instrument and have been analyzed using the same model atmospheres, atomic data and equivalent width modeling program. Abundances have been derived differentially to the Sun, using a solar spectrum obtained with Callisto as the reflector with the same instrumentation. We find that the iron abundances of CGP dwarfs are on average by 0.22 dex greater than that of no-CGP dwarfs. The iron abundance distributions of both the CGP and no-CGP dwarfs are different than that of the control dwarfs, while the combined iron abundances have a distribution which is very similar to that of the control dwarfs. All four samples (CGP, no-CGP, combined, control) have different effective temperature distributions. We show that metal enrichment occurs only for CGP dwarfs with temperatures just below solar and approximately 300 K higher than solar, whereas the abundance difference is insignificant at Teff around 6000 K.Comment: 52 pages (aastex 11pt, preprint style), including 17 figures and 13 tables; accepted for publication in AJ (scheduled for the October 2003 issue

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure

    The intrinsic strangeness and charm of the nucleon using improved staggered fermions

    Full text link
    We calculate the intrinsic strangeness of the nucleon, - , using the MILC library of improved staggered gauge configurations using the Asqtad and HISQ actions. Additionally, we present a preliminary calculation of the intrinsic charm of the nucleon using the HISQ action with dynamical charm. The calculation is done with a method which incorporates features of both commonly-used methods, the direct evaluation of the three-point function and the application of the Feynman- Hellman theorem. We present an improvement on this method that further reduces the statistical error, and check the result from this hybrid method against the other two methods and find that they are consistent. The values for and found here, together with perturbative results for heavy quarks, show that dark matter scattering through Higgs-like exchange receives roughly equal contributions from all heavy quark flavors.Comment: 17 pages, 14 figure

    Eccentricities of Planets in Binary Systems

    Full text link
    The most puzzling property of the extrasolar planets discovered by recent radial velocity surveys is their high orbital eccentricities, which are very difficult to explain within our current theoretical paradigm for planet formation. Current data reveal that at least 25% of these planets, including some with particularly high eccentricities, are orbiting a component of a binary star system. The presence of a distant companion can cause significant secular perturbations in the orbit of a planet. At high relative inclinations, large-amplitude, periodic eccentricity perturbations can occur. These are known as "Kozai cycles" and their amplitude is purely dependent on the relative orbital inclination. Assuming that every planet host star also has a (possibly unseen, e.g., substellar) distant companion, with reasonable distributions of orbital parameters and masses, we determine the resulting eccentricity distribution of planets and compare it to observations? We find that perturbations from a binary companion always appear to produce an excess of planets with both very high (e>0.6) and very low (e<0.1) eccentricities. The paucity of near-circular orbits in the observed sample implies that at least one additional mechanism must be increasing eccentricities. On the other hand, the overproduction of very high eccentricities observed in our models could be combined with plausible circularization mechanisms (e.g., friction from residual gas) to create more planets with intermediate eccentricities (e=0.1-0.6).Comment: 8 pages, to appear in "Close Binaries in the 21st Century: New Opportunities and Challenges", ed. A. Gimenez et al. (Springer
    corecore