806 research outputs found

    Stellar Parameters and Elemental Abundances of Late-G Giants

    Full text link
    The properties of 322 intermediate-mass late-G giants (comprising 10 planet-host stars) selected as the targets of Okayama Planet Search Program, many of which are red-clump giants, were comprehensively investigated by establishing their various stellar parameters (atmospheric parameters including turbulent velocity fields, metallicity, luminosity, mass, age, projected rotational velocity, etc.), and their photospheric chemical abundances for 17 elements, in order to study their mutual dependence, connection with the existence of planets, and possible evolution-related characteristics. The metallicity distribution of planet-host giants was found to be almost the same as that of non-planet-host giants, making marked contrast to the case of planet-host dwarfs tending to be metal-rich. Generally, the metallicities of these comparatively young (typical age of ~10^9 yr) giants tend to be somewhat lower than those of dwarfs at the same age, and super-metal-rich ([Fe/H] > 0.2) giants appear to be lacking. Apparent correlations were found between the abundances of C, O, and Na, suggesting that the surface compositions of these elements have undergone appreciable changes due to dredge-up of H-burning products by evolution-induced deep envelope mixing which becomes more efficient for higher-mass stars.Comment: Accepted for publication in PASJ (21 pages, 15 figures) (wrong URL of e-tables in Ver.1 has been corrected in Ver.2

    Application of tensor network method to two dimensional lattice N=1\mathcal{N}=1 Wess-Zumino model

    Full text link
    We study a tensor network formulation of the two dimensional lattice N=1\mathcal{N}=1 Wess-Zumino model with Wilson derivatives for both fermions and bosons. The tensor renormalization group allows us to compute the partition function without the sign problem, and basic ideas to obtain a tensor network for both fermion and scalar boson systems were already given in previous works. In addition to improving the methods, we have constructed a tensor network representation of the model including the Yukawa-type interaction of Majorana fermions and real scalar bosons. We present some numerical results.Comment: 8 pages, 4 figures, talk presented at the 35th International Symposium on Lattice Field Theory (Lattice 2017), 18-24 June 2017, Granada, Spai

    TVERBERG'S THEOREM FOR CELL COMPLEXES (New trends of transformation groups)

    Get PDF
    corecore