19,345 research outputs found

    National Aerospace Laboratory News (Japan)

    Get PDF
    Tests carried out in November 1981 on the stationary flap of STOL test planes at Kakuda Labs are described. Acoustic pressure, outer plate temperature of the fore flap, and acceleration, strain, and temperature of the outer plate of the main flap were measured. High load turbine inlet distortion experiments were also performed. Results of these experiments are discussed

    Conservativeness of non-symmetric diffusion processes generated by perturbed divergence forms

    Full text link
    Let E be an unbounded open (or closed) domain in Euclidean space of dimension greater or equal to two. We present conservativeness criteria for (possibly reflected) diffusions with state space E that are associated to fairly general perturbed divergence form operators. Our main tool is a recently extended forward and backward martingale decomposition, which reduces to the well-known Lyons-Zheng decomposition in the symmetric case.Comment: Corrected typos, minor modification

    Helicoidal ordering in iron perovskites

    Get PDF
    We consider magnetic ordering in materials with negative charge transfer energy, such as iron perovskite oxides. We show that for a large weight of oxygen holes in conduction bands, the double exchange mechanism favors a helicoidal rather than ferromagnetic spin ordering both in metals, e.g. SrFeO_3 and insulators with a small gap, e.g. CaFeO_3. We discuss the magnetic excitation spectrum and effects of pressure on magnetic ordering in these materials.Comment: 4 pages, 5 figure

    Chemical potential shift in La(1-x)Sr(x)MnO(3): Photoemission test of the phase separation scenario

    Full text link
    We have studied the chemical potential shift in La(1-x)Sr(x)MnO(3) as a function of doped hole concentration by core-level x-ray photoemission. The shift is monotonous, which means that there is no electronic phase separation on a macroscopic scale, whereas it is consistent with the nano-meter scale cluster formation induced by chemical disorder. Comparison of the observed shift with the shift deduced from the electronic specific heat indicates that hole doping in La(1-x)Sr(x)MnO(3) is well described by the rigid-band picture. In particular no mass enhancement toward the metal-insulator boundary was implied by the chemical potential shift, consistent with the electronic specific heat data.Comment: 7 pages, 3 figures, to be published in Europhysics Letter

    Nucleon strange quark content from two-flavor lattice QCD with exact chiral symmetry

    Get PDF
    Strange quark content of the nucleon is calculated in dynamical lattice QCD employing the overlap fermion formulation. For this quantity, exact chiral symmetry guaranteed by the Ginsparg-Wilson relation is crucial to avoid large contamination due to a possible operator mixing with uˉu+dˉd\bar{u}u+\bar{d}d. Gauge configurations are generated with two dynamical flavors on a 16^3 x 32 lattice at a lattice spacing a \simeq 0.12fm. We directly calculate the relevant three-point function on the lattice including a disconnected strange quark loop utilizing the techniques of all-to-all quark propagator and low-mode averaging. Our result f_{T_s} = 0.032(8)(22), is in good agreement with our previous indirect estimate using the Feynman-Hellmann theorem.Comment: 31 pages, 22 figures; version published in PR

    Absolute continuity of symmetric Markov processes

    Full text link
    We study Girsanov's theorem in the context of symmetric Markov processes, extending earlier work of Fukushima-Takeda and Fitzsimmons on Girsanov transformations of ``gradient type.'' We investigate the most general Girsanov transformation leading to another symmetric Markov process. This investigation requires an extension of the forward-backward martingale method of Lyons-Zheng, to cover the case of processes with jumps.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Probability (http://www.imstat.org/aop/) at http://dx.doi.org/10.1214/00911790400000043

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure

    Anisotropy and Ising-like transition of the S=5/2 two-dimensional Heisenberg antiferromagnet Mn-formate di-Urea

    Full text link
    Recently reported measurements of specific heat on the compound Mn-formate di-Urea (Mn-f-2U) by Takeda et al. [Phys. Rev. B 63, 024425 (2001)] are considered. As a model to describe the overall thermodynamic behavior of such compound, the easy-axis two-dimensional Heisenberg antiferromagnet is proposed and studied by means of the 'pure quantum self-consistent harmonic approximation' (PQSCHA). In particular it is shown that, when the temperature decreases, the compound exhibits a crossover from 2D-Heisenberg to 2D-Ising behavior, followed by a 2D-Ising-like phase transition, whose location allows to get a reliable estimate of the easy-axis anisotropy driving the transition itself. Below the critical temperature T_N=3.77 K, the specific heat is well described by the two-dimensional easy-axis model down to a temperature T*=1.47 K where a T^3-law sets in, possibly marking a low-temperature crossover of magnetic fluctuations from two to three dimensions.Comment: 3 pages, 2 figures, 47th Annual Conference on Magnetism and Magnetic Materials (Tampa, FL, USA, 11-15/11/2002
    • …
    corecore