1,116 research outputs found
The 19-Vertex Model at critical regime
We study the 19-vertex model associated with the quantum group
at critical regime . We give the realizations of the
type-I vertex operators in terms of free bosons and free fermions. Using these
free field realizations, we give the integral representations for the
correlation functions.Comment: LaTEX2e, 19page
A system of difference equations with elliptic coefficients and Bethe vectors
An elliptic analogue of the deformed Knizhnik-Zamolodchikov equations is
introduced. A solution is given in the form of a Jackson-type integral of Bethe
vectors of the XYZ-type spin chains.Comment: 20 pages, AMS-LaTeX ver.1.1 (amssymb), 15 figures in LaTeX picture
environment
Development of an Imaging Plate Radiation Detector
開始ページ、終了ページ: 冊子体のページ付
Construction of some missing eigenvectors of the XYZ spin chain at the discrete coupling constants and the exponentially large spectral degeneracy of the transfer matrix
We discuss an algebraic method for constructing eigenvectors of the transfer
matrix of the eight vertex model at the discrete coupling parameters. We
consider the algebraic Bethe ansatz of the elliptic quantum group for the case where the parameter satisfies for arbitrary integers , and . When or
is odd, the eigenvectors thus obtained have not been discussed previously.
Furthermore, we construct a family of degenerate eigenvectors of the XYZ spin
chain, some of which are shown to be related to the loop algebra
symmetry of the XXZ spin chain. We show that the dimension of some degenerate
eigenspace of the XYZ spin chain on sites is given by , if
is an even integer. The construction of eigenvectors of the transfer matrices
of some related IRF models is also discussed.Comment: 19 pages, no figure (revisd version with three appendices
Non-degenerate solutions of universal Whitham hierarchy
The notion of non-degenerate solutions for the dispersionless Toda hierarchy
is generalized to the universal Whitham hierarchy of genus zero with
marked points. These solutions are characterized by a Riemann-Hilbert problem
(generalized string equations) with respect to two-dimensional canonical
transformations, and may be thought of as a kind of general solutions of the
hierarchy. The Riemann-Hilbert problem contains arbitrary functions
, , which play the role of generating functions of
two-dimensional canonical transformations. The solution of the Riemann-Hilbert
problem is described by period maps on the space of -tuples
of conformal maps from disks of the
Riemann sphere and their complements to the Riemann sphere. The period maps are
defined by an infinite number of contour integrals that generalize the notion
of harmonic moments. The -function (free energy) of these solutions is also
shown to have a contour integral representation.Comment: latex2e, using amsmath, amssym and amsthm packages, 32 pages, no
figur
Solution Structure of the Tctex1 Dimer Reveals a Mechanism for Dynein-Cargo Interactions
SummaryTctex1 is a light chain found in both cytoplasmic and flagellar dyneins and is involved in many fundamental cellular activities, including rhodopsin transport within photoreceptors, and may function in the non-Mendelian transmission of t haplotypes in mice. Here, we present the NMR solution structure for the Tctex1 dimer from Chlamydomonas axonemal inner dynein arm I1. Structural comparisons reveal a strong similarity with the LC8 dynein light chain dimer, including formation of a strand-switched β sheet interface. Analysis of the Tctex1 structure enables the dynein intermediate chain binding site to be identified and suggests a mechanism by which cargo proteins might be attached to this microtubule motor complex. Comparison with the alternate dynein light chain rp3 reveals how the specificity of dynein-cargo interactions mediated by these dynein components is achieved. In addition, this structure provides insight into the consequences of the mutations found in the t haplotype forms of this protein
SDiff(2) Toda equation -- hierarchy, function, and symmetries
A continuum limit of the Toda lattice field theory, called the SDiff(2) Toda
equation, is shown to have a Lax formalism and an infinite hierarchy of higher
flows. The Lax formalism is very similar to the case of the self-dual vacuum
Einstein equation and its hyper-K\"ahler version, however now based upon a
symplectic structure and the group SDiff(2) of area preserving diffeomorphisms
on a cylinder . An analogue of the Toda lattice tau function is
introduced. The existence of hidden SDiff(2) symmetries are derived from a
Riemann-Hilbert problem in the SDiff(2) group. Symmetries of the tau function
turn out to have commutator anomalies, hence give a representation of a central
extension of the SDiff(2) algebra.Comment: 16 pages (``vanilla.sty" is attatched to the end of this file after
``\bye" command
Solvable vector nonlinear Riemann problems, exact implicit solutions of dispersionless PDEs and wave breaking
We have recently solved the inverse spectral problem for integrable PDEs in
arbitrary dimensions arising as commutation of multidimensional vector fields
depending on a spectral parameter . The associated inverse problem, in
particular, can be formulated as a non linear Riemann Hilbert (NRH) problem on
a given contour of the complex plane. The most distinguished examples
of integrable PDEs of this type, like the dispersionless
Kadomtsev-Petviashivili (dKP), the heavenly and the 2 dimensional
dispersionless Toda equations, are real PDEs associated with Hamiltonian vector
fields. The corresponding NRH data satisfy suitable reality and symplectic
constraints. In this paper, generalizing the examples of solvable NRH problems
illustrated in \cite{MS4,MS5,MS6}, we present a general procedure to construct
solvable NRH problems for integrable real PDEs associated with Hamiltonian
vector fields, allowing one to construct implicit solutions of such PDEs
parametrized by an arbitrary number of real functions of a single variable.
Then we illustrate this theory on few distinguished examples for the dKP and
heavenly equations. For the dKP case, we characterize a class of similarity
solutions, a class of solutions constant on their parabolic wave front and
breaking simultaneously on it, and a class of localized solutions breaking in a
point of the plane. For the heavenly equation, we characterize two
classes of symmetry reductions.Comment: 29 page
- …