108 research outputs found

    Comment on "Discretisations of constrained KP hierarchies"

    Full text link
    In the recent paper (R. Willox and M. Hattori, arXiv:1406.5828), an integrable discretization of the nonlinear Schr\"odinger (NLS) equation is studied, which, they think, was discovered by Date, Jimbo and Miwa in 1983 and has been completely forgotten over the years. In fact, this discrete NLS hierarchy can be directly obtained from an elementary auto-B\"acklund transformation for the continuous NLS hierarchy and has been known since 1982. Nevertheless, it has been rediscovered again and again in the literature without attribution, so we consider it meaningful to mention overlooked original references on this discrete NLS hierarchy.Comment: 6 pages; references adde

    Integrable discretization of the vector/matrix nonlinear Schr\"odinger equation and the associated Yang-Baxter map

    Full text link
    The action of a B\"acklund-Darboux transformation on a spectral problem associated with a known integrable system can define a new discrete spectral problem. In this paper, we interpret a slightly generalized version of the binary B\"acklund-Darboux (or Zakharov-Shabat dressing) transformation for the nonlinear Schr\"odinger (NLS) hierarchy as a discrete spectral problem, wherein the two intermediate potentials appearing in the Darboux matrix are considered as a pair of new dependent variables. Then, we associate the discrete spectral problem with a suitable isospectral time-evolution equation, which forms the Lax-pair representation for a space-discrete NLS system. This formulation is valid for the most general case where the two dependent variables take values in (rectangular) matrices. In contrast to the matrix generalization of the Ablowitz-Ladik lattice, our discretization has a rational nonlinearity and admits a Hermitian conjugation reduction between the two dependent variables. Thus, a new proper space-discretization of the vector/matrix NLS equation is obtained; by changing the time part of the Lax pair, we also obtain an integrable space-discretization of the vector/matrix modified KdV (mKdV) equation. Because B\"acklund-Darboux transformations are permutable, we can increase the number of discrete independent variables in a multi-dimensionally consistent way. By solving the consistency condition on the two-dimensional lattice, we obtain a new Yang-Baxter map of the NLS type, which can be considered as a fully discrete analog of the principal chiral model for projection matrices.Comment: 33 pages; (v2) minor corrections (v3) added one paragraph on a space-discrete matrix KdV equation at the end of section
    • …
    corecore