2,137 research outputs found

    Formation of a disc gap induced by a planet: Effect of the deviation from Keplerian disc rotation

    Get PDF
    The gap formation induced by a giant planet is important in the evolution of the planet and the protoplanetary disc. We examine the gap formation by a planet with a new formulation of one-dimensional viscous discs which takes into account the deviation from Keplerian disc rotation due to the steep gradient of the surface density. This formulation enables us to naturally include the Rayleigh stable condition for the disc rotation. It is found that the derivation from Keplerian disc rotation promotes the radial angular momentum transfer and makes the gap shallower than in the Keplerian case. For deep gaps, this shallowing effect becomes significant due to the Rayleigh condition. In our model, we also take into account the propagation of the density waves excited by the planet, which widens the range of the angular momentum deposition to the disc. The effect of the wave propagation makes the gap wider and shallower than the case with instantaneous wave damping. With these shallowing effects, our one-dimensional gap model is consistent with the recent hydrodynamic simulations.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    Mass Estimates of a Giant Planet in a Protoplanetary Disk from the Gap Structures

    Get PDF
    A giant planet embedded in a protoplanetary disk forms a gap. An analytic relationship among the gap depth, planet mass MpM_{p}, disk aspect ratio hph_p, and viscosity α\alpha has been found recently, and the gap depth can be written in terms of a single parameter K=(Mp/M)2hp5α1K= (M_{p}/M_{\ast})^2 h_p^{-5} \alpha^{-1}. We discuss how observed gap features can be used to constrain the disk and/or planet parameters based on the analytic formula for the gap depth. The constraint on the disk aspect ratio is critical in determining the planet mass so the combination of the observations of the temperature and the image can provide a constraint on the planet mass. We apply the formula for the gap depth to observations of HL~Tau and HD~169142. In the case of HL~Tau, we propose that a planet with 0.3\gtrsim 0.3 is responsible for the observed gap at 3030~AU from the central star based on the estimate that the gap depth is 1/3\lesssim 1/3. In the case of HD~169142, the planet mass that causes the gap structure recently found by VLA is 0.4MJ\gtrsim 0.4 M_J. We also argue that the spiral structure, if observed, can be used to estimate the lower limit of the disk aspect ratio and the planet mass.Comment: 16 pages, 5 figures, accepted for publication in The Astrophysical Journal Letter

    Effect of dust size and structure on scattered light images of protoplanetary discs

    Get PDF
    We study scattered light properties of protoplanetary discs at near-infrared wavelengths for various dust size and structure by performing radiative transfer simulations. We show that different dust structures might be probed by measuring disk polarisation fraction as long as the dust radius is larger than the wavelength. When the radius is larger than the wavelength, disc scattered light will be highly polarised for highly porous dust aggregates, whereas more compact dust structure tends to show low polarisation fraction. Next, roles of monomer radius and fractal dimension for scattered light colours are studied. We find that, outside the Rayleigh regime, as fractal dimension or monomer radius increases, colours of the effective albedo at near-infrared wavelengths vary from blue to red. Our results imply that discs showing grey or slightly blue colours and high polarisation fraction in near-infrared wavelengths might be explained by the presence of large porous aggregates containing sub-microns sized monomers.Comment: Accepted for publication in MNRAS, 18 pages, 19 figure

    Cohomology groups with compact support for flat line bundles on certain complex Lie groups

    Full text link
    Let XX be a complex surface obtained as the quotient of the complex Euclidean space C2\mathbb{C}^2 by a discrete subgroup of rank 33. We investigate the cohomology group H01(X,E)H_0^1(X, E) with compact support for a unitary flat line bundle EE over XX. We show the vanishing of H01(X,E)H_0^1(X, E) for a certain class of such pairs (X,E)(X, E), which includes infinitely many examples such that H1(X,E)H^1(X, E) is non-Hausdorff and infinite dimensional.Comment: 17 page

    Attenuation of guanine oxidation via DNA-mediated electron transfer in a crowded environment using small cosolutes

    Get PDF
    Guanine oxidation induced by photoirradiation on a pyrene-modified oligonucleotide was investigated under molecular crowding using small cosolutes such as glycerol. The efficiency of guanine photooxidation was suppressed in accordance with the increase in the concentration of glycerol. The results of photooxidation experiments using fully matched and mismatched DNA showed that guanine decomposition was mainly caused by DNA-mediated electron transfer (ET) in glycerol mixed solutions, as well as in diluted aqueous buffer solutions. Multiple factors can contribute to the suppression of guanine oxidation in crowded environments. However, our experimental results indicated that the attenuation of the DNA-mediated ET process suppressed guanine oxidation. On the other hand, experiments using ethylene glycol showed that guanine decomposition efficiency varies depending on the surrounding solvent. These results suggested that changes in the characteristics of the surrounding medium affect the DNA fluctuation, dominating DNA-mediated ET
    corecore