17 research outputs found

    Generation of Cellular Reactive Oxygen Species by Activation of the EP2 Receptor Contributes to Prostaglandin E2-Induced Cytotoxicity in Motor Neuron-Like NSC-34 Cells

    No full text
    Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease characterized by progressive degeneration of motor neurons in the central nervous system. Prostaglandin E2 (PGE2) plays a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. We have shown previously that PGE2 directly induces neuronal death through activation of the E-prostanoid (EP) 2 receptor in differentiated NSC-34 cells, a motor neuron-like cell line. In the present study, to clarify the mechanisms underlying PGE2-induced neurotoxicity, we focused on generation of intracellular reactive oxygen species (ROS) and examined the effects of N-acetylcysteine (NAC), a cell-permeable antioxidant, on PGE2-induced cell death in differentiated NSC-34 cells. Dichlorofluorescein (DCF) fluorescence analysis of PGE2-treated cells showed that intracellular ROS levels increased markedly with time, and that this effect was antagonized by a selective EP2 antagonist (PF-04418948) but not a selective EP3 antagonist (L-798,106). Although an EP2-selective agonist, butaprost, mimicked the effect of PGE2, an EP1/EP3 agonist, sulprostone, transiently but significantly decreased the level of intracellular ROS in these cells. MTT reduction assay and lactate dehydrogenase release assay revealed that PGE2- and butaprost-induced cell death were each suppressed by pretreatment with NAC in a concentration-dependent manner. Western blot analysis revealed that the active form of caspase-3 was markedly increased in the PGE2- and butaprost-treated cells. These increases in caspase-3 protein expression were suppressed by pretreatment with NAC. Moreover, dibutyryl-cAMP treatment of differentiated NSC-34 cells caused intracellular ROS generation and cell death. Our data reveal the existence of a PGE2-EP2 signaling-dependent intracellular ROS generation pathway, with subsequent activation of the caspase-3 cascade, in differentiated NSC-34 cells, suggesting that PGE2 is likely a key molecule linking inflammation to oxidative stress in motor neuron-like NSC-34 cells

    Usefulness of the MALDI-TOF MS technology with membrane filter protocol for the rapid identification of microorganisms in perioperative drainage fluids of hepatobiliary pancreatic surgery.

    No full text
    Surgical site infections (SSIs) are significant and frequent perioperative complications, occurring due to the contamination of the surgical site. The late detection of SSIs, especially organ/space SSIs which are the more difficult to treat, often leads to severe complications. An effective method that can identify bacteria with a high accuracy, leading to the early detection of organ/space SSIs, is needed. Ninety-eight drainage fluid samples obtained from 22 patients with hepatobiliary pancreatic disease were analyzed to identify microorganisms using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) with a new membrane filtration protocol and rapid BACpro® pretreatment compared to sole rapid BACpro® pretreatment. The levels of detail of rapid BACpro® pretreatment with or without filtration were also evaluated for the accuracy of bacterial identification. We found that reliable scores for E. coli and E. faecalis were obtained by inoculation with 1.0 × 104 CFU/ml after preparation of the membrane filter with rapid BACpro®, indicating approximately 10-folds more sensitive compared to sole rapid BACpro® pretreatment in drainage fluid specimens. Among 60 bacterial positive colonies in drainage fluid specimens, the MALDI-TOF MS and the membrane filtration with rapid BACpro® identified 53 isolates (88.3%) with a significantly higher accuracy, compared to 25 isolates in the rapid BACpro® pretreatment group (41.7%) (p < 0.001). Among the 78 strains, 14 enteric Gram-negative bacteria (93.0%) and 55 Gram-positive cocci (87.3%) were correctly identified by the membrane filtration with rapid BACpro® with a high reliability. This novel protocol could identify bacterial species within 30 min, at 22-3 per sample, thus leading to cost and time savings. MALDI-TOF MS with membrane filter and rapid BACpro® is a quick and reliable method for bacterial identification in drainage fluids. The shortened analysis time will enable earlier selection of suitable antibiotics for treatment of organ/space SSIs to improve patients' outcomes

    Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis.

    No full text
    Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and differentiation of human CD133+ cell-derived EPCs. We established stromal systems using HESS-5 murine bone marrow cells transfected with human Jagged-1 (hJagged-1) or human Dll-1 (hDll-1). CD133+ cord blood cells were co-cultured with the stromal cells for 7 days, and then their proliferation, differentiation, and EPC colony formation was evaluated. We found that hJagged-1 induced the proliferation and differentiation of CD133+ cord blood EPCs. In contrast, hDll-1 had little effect. CD133+ cells stimulated by hJagged-1 differentiated into CD31+/KDR+ cells, expressed vascular endothelial growth factor-A, and showed enhanced EPC colony formation compared with CD133+ cells stimulated by hDll-1. To evaluate the angiogenic properties of hJagged-1- and hDll-1-stimulated EPCs in vivo, we transplanted these cells into the ischemic hindlimbs of nude mice. Transplantation of EPCs stimulated by hJagged-1, but not hDll-1, increased regional blood flow and capillary density in ischemic hindlimb muscles. This is the first study to show that human Notch signaling influences EPC proliferation and differentiation in the bone marrow microenvironment. Human Jagged-1 induced the proliferation and differentiation of CD133+ cord blood progenitors compared with hDll-1. Thus, hJagged-1 signaling in the bone marrow niche may be used to expand EPCs for therapeutic angiogenesis
    corecore