141 research outputs found

    Using HAADF-STEM for atomic-scale evaluation of incorporation of antibacterial Ag atoms in a ß-tricalcium phosphate structure

    Get PDF
    Structural evaluation of ionic additions in calcium phosphates that enhance their performance is a long-lasting area of research in the field of biomedical materials. Ionic incorporation in ß-tricalcium phosphate (ß-TCP) structures is indispensable for obtaining desirable properties for specific functions and applications. Owing to its complex structure and beam-sensitive nature, determining the extent of ion incorporation and its corresponding location in the ß-TCP structure is challenging. Further, very few experimental studies have been able to estimate the location of Ag atoms incorporated in a ß-TCP structure while considering the associated changes in lattice parameters. Although the incorporation alters the lattice parameters, the alteration is not significant enough for estimating the location of the incorporated Ag atoms. Here, Ag incorporation in a ß-TCP structure was evaluated on atomic scale using scanning transmission electron microscopy (STEM). To the best of our knowledge, this is the first report to unambiguously determine the location of the incorporated Ag atoms in the ß-TCP structure by comparing z-contrast profiles of the Ag and Ca atoms by combining the state-of-art STEM observations and STEM image simulations. The Ag incorporation in the Ca(4) sites of ß-TCP, as estimated by the Rietveld refinement, was in good agreement with the high-angle annular dark-field STEM observations and the simulations of the location of Ag atoms for [001] and [010] zone axes.Gokcekaya O., Ueda K., Narushima T., et al. Using HAADF-STEM for atomic-scale evaluation of incorporation of antibacterial Ag atoms in a ß-tricalcium phosphate structure. Nanoscale, 12, 31, 16596. https://doi.org/10.1039/d0nr04208k

    Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents

    Get PDF
    This is the first report presenting the development of a Co–Cr–W–Ni–Mn alloy by adding 6 mass pct Mn to ASTM F90 Co–20Cr–15W–10Ni (CCWN, mass pct) alloy for use as balloon-expandable stents with an excellent balance of mechanical properties and corrosion resistance. The effects of Mn addition on the microstructures as well as the mechanical and corrosion properties were investigated after hot forging, solution treatment, swaging, and static recrystallization. The Mn-added alloy with a grain size of ~ 20 µm (recrystallization condition: 1523 K, 150 seconds) exhibited an ultimate tensile strength of 1131 MPa, 0.2 pct proof stress of 535 MPa, and plastic elongation of 66 pct. Additionally, it exhibited higher ductility and lower yield stress while maintaining high strength compared to the ASTM F90 CCWN alloy. The formation of intersecting stacking faults was suppressed by increasing the stacking fault energy (SFE) with Mn addition, resulting in a lower yield stress. The low-yield stress is effective in suppressing stent recoil. In addition, strain-induced martensitic transformation during plastic deformation was suppressed by increasing the SFE, thereby improving the ductility. The Mn-added alloys also exhibited good corrosion resistance, similar to the ASTM F90 CCWN alloy. Mn-added Co–Cr–W–Ni alloys are suitable for use as balloon-expandable stents.Yanagihara S., Ueki K., Ueda K., et al. Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 52, 9, 4137. https://doi.org/10.1007/s11661-021-06374-7

    Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance

    Get PDF
    This is the first comprehensive study on the development of a cubic crystallographic texture in pure chromium (Cr) manufactured using laser powder bed fusion (LPBF) with different laser energy densities to alter its microstructure and high-temperature oxidation behavior. An increase in the laser energy density led to the formation of a strong crystallographic texture, which was preferentially oriented in the (100) plane, and there were microstructural improvements in the pure Cr. The grain size of the (100)-oriented Cr was larger than that of the randomly oriented Cr. In addition, the high-angle grain boundary and coincident site lattice (CSL) boundary characteristics were altered. The (100)-oriented Cr exhibited a decrease in the oxide thickness that was due to the decrease in the grain boundary density with a larger grain size and an increase in the CSL boundary ratio. In contrast, the Cr with a random texture showed higher oxidation kinetics and spallation of the oxide layer. The oxidation kinetics of the pure Cr manufactured using LPBF obeyed the parabolic rate law. However, the crystal orientation affected the oxidation of the Cr as the (100)-oriented pure Cr displayed a lower parabolic rate constant, indicating that the (100)-oriented Cr was oxidation-resistant. This is the first report to demonstrate the cubic crystallographic texture formation and the improvement of high-temperature oxidation resistance in Cr manufactured using LPBF.Gokcekaya O., Hayashi N., Ishimoto T., et al. Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance. Additive Manufacturing, 36, 101624. https://doi.org/10.1016/j.addma.2020.101624

    Improvement of mechanical properties by microstructural evolution of biomedical Co-Cr-W-Ni alloys with the addition of Mn and Si

    Full text link
    We investigated changes in the microstructure and mechanical properties of biomedical Co-20Cr-15W-10Ni alloys (mass%) containing 8 mass% Mn and 0-3 mass% Si due to hot forging, solution treatment, cold swaging, and static recrystallization. The η-phase (M₆X-M₁₂X type cubic structure, M: metallic elements, X: C and/or N, space group: Fd-3m (227)) and CoWSi type Laves phase (C14 MgZn2 type hexagonal structure, space group: P63/mmc (194)) were confirmed as precipitates in the as-cast and as-forged alloys. To the best of our knowledge, this is the first report that reveals the formation of CoWSi type Laves phase precipitates in Co-Cr-W-Ni-based alloys. The addition of Si promoted the formation of precipitates of both η-phase and CoWSi type Laves phase. The solution-treated 8Mn+(0, 1)Si-added alloys exhibited TWIP-like plastic deformation behavior with an increasing work-hardening rate during the early to middle stages of plastic deformation. This plastic deformation behavior is effective in achieving both the low yield stress and high strength required to develop a high-performance balloon-expandable stent. The 8Mn+2Si-added alloy retained the CoWSi type Laves phase even after solution treatment, such that the ductility decreased but the strength improved. Additions of Mn and Si are effective in improving the ductility and strength of the Co-Cr-W-Ni alloy, respectively.Ueki K., Yanagihara S., Ueda K., et al. Improvement of mechanical properties by microstructural evolution of biomedical Co-Cr-W-Ni alloys with the addition of Mn and Si. Materials Transactions 62, 229 (2021); https://doi.org/10.2320/matertrans.MT-M2020300
    corecore