3 research outputs found

    Highly sensitive biomolecular interaction detection method using optical bound/free separation with grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS).

    No full text
    Grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS) with optical bound/free (B/F) separation technique was developed by employing a highly directional fluorescence with polarization of surface plasmon-coupled emission (SPCE) to realize highly sensitive immunoassay regardless of the ligand affinity. A highly sensitive immunoassay system with GC-SPFS was constructed using a plastic sensor chip reproducibly fabricated in-house by nanoimprinting and applied to the quantitative detection of an anti-lysozyme single-domain antibody (sdAb), to compare conventional washing B/F separation with optical B/F separation. Differences in the affinity of the anti-lysozyme sdAb, induced by artificial mutation of only one amino acid residue in the variable domain were attributed to higher sensitivity than that of the conventional Biacore surface plasmon resonance (SPR) system. The detection limit (LOD; means of six replicates of the zero standard plus three standard deviations) of the GC-SPFS immunoassay with optical B/F separation, was estimated to be 1.2 ng/ml with the low-affinity ligand (mutant sdAb Y52A: KD level was of the order of 10-7 ~ 10-6 M) and was clearly improved as compared to that (LOD: 9.4 ng/ml) obtained with the conventional washing B/F separation. These results indicate that GC-SPFS with the optical B/F separation technique offers opportunities to re-evaluate low-affinity biomaterials that are neither fully utilized nor widespread, and could facilitate the creation of novel and innovative methods in drug and diagnostic development

    Wisteria floribunda Agglutinin and Its Reactive-Glycan-Carrying Prostate-Specific Antigen as a Novel Diagnostic and Prognostic Marker of Prostate Cancer

    No full text
    Wisteria floribunda agglutinin (WFA) preferably binds to LacdiNAc glycans, and its reactivity is associated with tumor progression. The aim of this study to examine whether the serum LacdiNAc carrying prostate-specific antigen–glycosylation isomer (PSA-Gi) and WFA-reactivity of tumor tissue can be applied as a diagnostic and prognostic marker of prostate cancer (PCa). Between 2007 and 2016, serum PSA-Gi levels before prostate biopsy (Pbx) were measured in 184 biopsy-proven benign prostatic hyperplasia patients and 244 PCa patients using an automated lectin-antibody immunoassay. WFA-reactivity on tumor was analyzed in 260 radical prostatectomy (RP) patients. Diagnostic and prognostic performance of serum PSA-Gi was evaluated using area under the receiver-operator characteristic curve (AUC). Prognostic performance of WFA-reactivity on tumor was evaluated via Cox proportional hazards regression analysis and nomogram. The AUC of serum PSA-Gi detecting PCa and predicting Pbx Grade Group (GG) 3 and GG ≥ 3 after RP was much higher than those of conventional PSA. Multivariate analysis showed that WFA-reactivity on prostate tumor was an independent risk factor of PSA recurrence. The nomogram was a strong model for predicting PSA-free survival provability with a c-index ≥0.7. Serum PSA-Gi levels and WFA-reactivity on prostate tumor may be a novel diagnostic and pre- and post-operative prognostic biomarkers of PCa, respectively

    Clinical significance of the LacdiNAc-glycosylated prostate-specific antigen assay for prostate cancer detection

    No full text
    To reduce unnecessary prostate biopsies (Pbx), better discrimination is needed. To identify clinically significant prostate cancer (CSPC) we determined the performance of LacdiNAc-glycosylated prostate-specific antigen (LDN-PSA) and LDN-PSA normalized by prostate volume (LDN-PSAD). We retrospectively measured LDN-PSA, total PSA (tPSA), and free PSA/tPSA (F/T PSA) values in 718 men who underwent a Pbx in 3 academic urology clinics in Japan and Canada (Pbx cohort) and in 174 PC patients who subsequently underwent radical prostatectomy in Australia (preop-PSA cohort). The assays were evaluated using the area under the receiver operating characteristics curve (AUC) and decision curve analyses to discriminate CSPC. In the Pbx cohort, LDN-PSAD (AUC 0.860) provided significantly better clinical performance for discriminating CSPC compared with LDN-PSA (AUC 0.827, P = 0.0024), PSAD (AUC 0.809, P = 7. Limitations include limited sample size, retrospective nature, and no family history information prior to biopsy. LacdiNAc-glycosylated PSA is significantly better than the conventional PSA test in identifying patients with CSPC. This study was approved by the ethics committee of each institution ("The Study about Carbohydrate Structure Change in Urological Disease"; approval no. 2014-195)
    corecore