61 research outputs found

    現代的なリズムのダンス授業の学習指導に関する研究 : ステップ習得学習に着目して

    Get PDF
    広島大学(Hiroshima University)博士(教育学)Doctor of Philosophy in Educationdoctora

    Polyclonality of BRAF Mutations in Acquired Melanocytic Nevi

    Get PDF
    Melanocytic nevi are thought to be senescent clones of melanocytes that have acquired an oncogenic BRAF mutation. BRAF mutation is considered to be a crucial step in the initiation of melanocyte transformation. However, using immunomagnetic separation or laser-capture microdissection, we examined BRAF mutations in sets of approximately 50 single cells isolated from acquired melanocytic nevi from 13 patients and found a substantial number of nevus cells that contained wild-type BRAF mixed with nevus cells that contained BRAF(V600E). Furthermore, we simultaneously amplified BRAF exon 15 and a neighboring single nucleotide polymorphism (SNP), rs7801086, from nevus cell samples obtained from four patients who were heterozygous for this SNP. Subcloning and sequencing of the polymerase chain reaction products showed that both SNP alleles harbored the BRAF(V600E) mutation, indicating that the same BRAF(V600E) mutation originated from different cells. The polyclonality of BRAF mutations in acquired melanocytic nevi suggests that mutation of BRAF may not be an initial event in melanocyte transformation.ArticleJOURNAL OF THE NATIONAL CANCER INSTITUTE. 101(20):1423-1427 (2009)journal articl

    Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased matrix metalloproteinase (MMP)-9 in the plasma and brain is associated with blood-brain barrier (BBB) disruption through proteolytic activity in neuroinflammatory diseases. MMP-9 is present in the brain microvasculature and its vicinity, where brain microvascular endothelial cells (BMECs), pericytes and astrocytes constitute the BBB. Little is known about the cellular source and role of MMP-9 at the BBB. Here, we examined the ability of pericytes to release MMP-9 and migrate in response to inflammatory mediators in comparison with BMECs and astrocytes, using primary cultures isolated from rat brains.</p> <p>Methods</p> <p>The culture supernatants were collected from primary cultures of rat brain endothelial cells, pericytes, or astrocytes. MMP-9 activities and levels in the supernatants were measured by gelatin zymography and western blot, respectively. The involvement of signaling molecules including mitogen-activated protein kinases (MAPKs) and phosphoinositide-3-kinase (PI3K)/Akt in the mediation of tumor necrosis factor (TNF)-α-induced MMP-9 release was examined using specific inhibitors. The functional activity of MMP-9 was evaluated by a cell migration assay.</p> <p>Results</p> <p>Zymographic and western blot analyses demonstrated that TNF-α stimulated pericytes to release MMP-9, and this release was much higher than from BMECs or astrocytes. Other inflammatory mediators [interleukin (IL)-1β, interferon-γ, IL-6 and lipopolysaccharide] failed to induce MMP-9 release from pericytes. TNF-α-induced MMP-9 release from pericytes was found to be mediated by MAPKs and PI3K. Scratch wound healing assay showed that in contrast to BMECs and astrocytes the extent of pericyte migration was significantly increased by TNF-α. This pericyte migration was inhibited by anti-MMP-9 antibody.</p> <p>Conclusion</p> <p>These findings suggest that pericytes are most sensitive to TNF-α in terms of MMP-9 release, and are the major source of MMP-9 at the BBB. This pericyte-derived MMP-9 initiated cellular migration of pericytes, which might be involved in pericyte loss in the damaged BBB.</p

    Increased Plasma VEGF Levels in Patients with Cerebral Large Artery Disease Are Associated with Cerebral Microbleeds

    Get PDF
    Background/Purpose: Because atherosclerotic factors and antithrombotic agents sometimes induce cerebral microbleeds (CMBs), patients with cerebral large artery disease (CLAD) tend to have more CMBs than control subjects. On the other hand, VEGF contributes to the disruption of the blood-brain barrier, and it may induce parenchymal edema and bleeding. We conducted a study to evaluate the role of vascular endothelial growth factor (VEGF) in the occurrence of CMBs in patients with CLAD. Methods: CLAD is defined as stenosis or occlusion of either the carotid artery or the middle cerebral artery of 50% or more. We prospectively registered patients with CLAD who were hospitalized in our neurocenter. Biological backgrounds, atherosclerotic risk factors, administration of antithrombotics before hospitalization, and levels of cytokines and chemokines were evaluated. Susceptibility-weighted imaging or T2*-weighted MR angiography was used to evaluate CMBs. The Brain Observer MicroBleed Scale (BOMBS) was used for CMB assessments. Images were analyzed with regard to the presence or absence of CMBs. We also examined plasma VEGF concentrations using a commercial ELISA kit. Because more than half showed plasma VEGF levels below assay detection limits (3.2 pg/mL), the patients were dichotomized by plasma VEGF levels into two groups (above and below the detection limit). After univariate analyses, logistic regression analysis was conducted to determine the factors associated with the CMBs after adjustment for age, sex, the presence of hypertension, and administration of antithrombotic agents. A similar analysis with CMBs separated by location (cortex, subcortex, or posterior circulation) was also conducted. Results: Sixty-six patients (71.1 ± 8.9 years, 53 males and 13 females) were included in this study. Plasma VEGF levels were not correlated with age, sex, and atherosclerotic risk factors; however, patients with VEGF levels &#x3e;3.2 pg/mL tended toward more frequent CMBs (60.0 vs. 32.6%, in the presence and absence of CMBs, p = 0.056). With regard to the location of CMBs, those in the cortex and/or at the gray-white junction were observed more frequently in the patients with VEGF levels &#x3e;3.2 pg/mL after multivariable analyses (odds ratio: 3.80; 95% confidence interval: 1.07–13.5; p = 0.039). Conclusions: In patients with CLAD, elevated plasma VEGF might be associated with CMBs, especially those located in the cortex and/or at the gray-white junction

    Brain pericytes regulate the blood-brain barrier function

    No full text
    corecore