48 research outputs found
Early‐onset coenzyme Q10 deficiency associated with ataxia and respiratory chain dysfunction due to novel pathogenic COQ8A variants, including a large intragenic deletion
Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous subtype of mitochondrial disease. We report two girls with ataxia and mitochondrial respiratory chain deficiency who were shown to have primary CoQ10 deficiency. Muscle histochemistry displayed signs of mitochondrial dysfunction—ragged red fibers, mitochondrial paracrystalline inclusions, and lipid deposits while biochemical analyses revealed complex II+III respiratory chain deficiencies. MRI brain demonstrated cerebral and cerebellar atrophy. Targeted molecular analysis identified a homozygous c.1015G>A, p.(Ala339Thr) COQ8A variant in subject 1, while subject 2 was found to harbor a single heterozygous c.1029_1030delinsCA variant predicting a p.Gln343_Val344delinsHisMet amino acid substitution. Subsequent investigations identified a large‐scale COQ8A deletion in trans to the c.1029_1030delinsCA allele. A skin biopsy facilitated cDNA studies that confirmed exon skipping in the fibroblast derived COQ8A mRNA transcript. This report expands the molecular genetic spectrum associated with COQ8A ‐related mitochondrial disease and highlights the importance of thorough investigation of candidate pathogenic variants to establish phase. Rapid diagnosis is of the utmost importance as patients may benefit from therapeutic CoQ10 supplementation
Conjugated docosahexaenoic acid suppresses KPL-1 human breast cancer cell growth in vitro and in vivo: potential mechanisms of action
Introduction The present study was conducted to examine the effect of conjugated docosahexaenoic acid (CDHA) on cell growth, cell cycle progression, mode of cell death, and expression of cell cycle regulatory and/or apoptosis-related proteins in KPL-1 human breast cancer cell line. This effect of CDHA was compared with that of docosahexaenoic acid (DHA).
Methods KPL-1 cell growth was assessed by colorimetric 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; cell cycle progression and mode of cell death were examined by flow cytometry; and levels of expression of p53, p21Cip1/Waf1, cyclin D1, Bax, and Bcl-2 proteins were examined by Western blotting analysis. In vivo tumor growth was examined by injecting KPL-1 cells subcutaneously into the area of the right thoracic mammary fat pad of female athymic mice fed a CDHA diet.
Results CDHA inhibited KPL-1 cells more effectively than did DHA (50% inhibitory concentration for 72 hours: 97 μmol/l and 270 μmol/l, respectively). With both CDHA and DHA growth inhibition was due to apoptosis, as indicated by the appearance of a sub-G1 fraction. The apoptosis cascade involved downregulation of Bcl-2 protein; Bax expression was unchanged. Cell cycle progression was due to G0/G1 arrest, which involved increased expression of p53 and p21Cip1/Waf1, and decreased expression of cyclin D1. CDHA modulated cell cycle regulatory proteins and apoptosis-related proteins in a manner similar to that of parent DHA. In the athymic mouse system 1.0% dietary CDHA, but not 0.2%, significantly suppressed growth of KPL-1 tumor cells; CDHA tended to decrease regional lymph node metastasis in a dose dependent manner.
Conclusion CDHA inhibited growth of KPL-1 human breast cancer cells in vitro more effectively than did DHA. The mechanisms of action involved modulation of apoptosis cascade and cell cycle progression. Dietary CDHA at 1.0% suppressed KPL-1 cell growth in the athymic mouse system.</p
Exhaustive expansion: A novel technique for analyzing complex data generated by higher-order polychromatic flow cytometry experiments
<p>Abstract</p> <p>Background</p> <p>The complex data sets generated by higher-order polychromatic flow cytometry experiments are a challenge to analyze. Here we describe Exhaustive Expansion, a data analysis approach for deriving hundreds to thousands of cell phenotypes from raw data, and for interrogating these phenotypes to identify populations of biological interest given the experimental context.</p> <p>Methods</p> <p>We apply this approach to two studies, illustrating its broad applicability. The first examines the longitudinal changes in circulating human memory T cell populations within individual patients in response to a melanoma peptide (gp100<sub>209-2M</sub>) cancer vaccine, using 5 monoclonal antibodies (mAbs) to delineate subpopulations of viable, gp100-specific, CD8+ T cells. The second study measures the mobilization of stem cells in porcine bone marrow that may be associated with wound healing, and uses 5 different staining panels consisting of 8 mAbs each.</p> <p>Results</p> <p>In the first study, our analysis suggests that the cell surface markers CD45RA, CD27 and CD28, commonly used in historical lower order (2-4 color) flow cytometry analysis to distinguish memory from naïve and effector T cells, may not be obligate parameters in defining central memory T cells (T<sub>CM</sub>). In the second study, we identify novel phenotypes such as CD29+CD31+CD56+CXCR4+CD90+Sca1-CD44+, which may characterize progenitor cells that are significantly increased in wounded animals as compared to controls.</p> <p>Conclusions</p> <p>Taken together, these results demonstrate that Exhaustive Expansion supports thorough interrogation of complex higher-order flow cytometry data sets and aids in the identification of potentially clinically relevant findings.</p
The pathology of familial breast cancer: The pathology of familial breast cancer How do the functions of BRCA1 and BRCA2 relate to breast tumour pathology?
Women with mutations in the breast cancer susceptibility genes, BRCA1 and BRCA2, have an increased risk of developing breast cancer. Both BRCA1 and BRCA2 are thought to be tumour suppressor genes since the wild type alleles of these genes are lost in tumours from heterozygous carriers. Several functions have been proposed for the proteins encoded by these genes which could explain their roles in tumour suppression. Both BRCA1 and BRCA2 have been suggested to have a role in transcriptional regulation and several potential BRCA1 target genes have been identified. The nature of these genes suggests that loss of BRCA1 could lead to inappropriate proliferation, consistent with the high mitotic grade of BRCA1-associated tumours. BRCA1 and BRCA2 have also been implicated in DNA repair and regulation of centrosome number. Loss of either of these functions would be expected to lead to chromosomal instability, which is observed in BRCA1 and BRCA2-associated tumours. Taken together, these studies give an insight into the pathogenesis of BRCA-associated tumours and will inform future therapeutic strategies
Combined inhibition of XIAP and BCL2 drives maximal therapeutic efficacy in genetically diverse aggressive acute myeloid leukemia
Aggressive therapy-resistant and refractory acute myeloid leukemia (AML) has an extremely poor outcome. By analyzing a large number of genetically complex and diverse, primary high-risk poor-outcome human AML samples, we identified specific pathways of therapeutic vulnerability. Through drug screens followed by extensive in vivo validation and genomic analyses, we found inhibition of cytosolic and mitochondrial anti-apoptotic proteins XIAP, BCL2 and MCL1, and a key regulator of mitosis, AURKB, as a vulnerability hub based on patient-specific genetic aberrations and transcriptional signatures. Combinatorial therapeutic inhibition of XIAP with an additional patient-specific vulnerability eliminated established AML in vivo in patient-derived xenografts (PDXs) bearing diverse genetic aberrations, with no signs of recurrence during off-treatment follow-up. By integrating genomic profiling and drug-sensitivity testing, this work provides a platform for a precision-medicine approach for treating aggressive AML with high unmet need