86 research outputs found
Glycocalyx Degradation in Retinal and Choroidal Capillary Endothelium in Rats with Diabetes and Hypertension
Endothelial glycocalyx (GCX) has been reported as a protective factor for vascular endothelial cells (VEC) in diabetes and hypertension. However, the involvement of GCX impairment in ocular vasculopathy remains unclear. We evaluated the changes in the GCX thicknesses of the retinal and choroidal capillaries in rats with diabetes and hypertension by cationic colloidal iron staining using a transmission electron microscope. In the control group, the mean (standard error of the mean) thicknesses of retinal and choroidal GCX were 60.2 (1.5) nm and 84.3 (3.1) nm, respectively. The diabetic rats showed a significant decrease of GCX thickness in the retina, but not in the choroid, compared to controls (28.3 (0.3) nm, p<0.01 and 77.8 (1.4) nm, respectively). In the hypertensive rats, both retinal and choroidal GCX were significantly decreased compared to the control values (10.9 (0.4) nm and 13.2 (1.0) nm, respectively, both p<0.01). Moreover, we could visualize the adhesion of leukocytes and platelets on the luminal surface of VEC, at the site where the GCX was markedly degraded. These findings suggest that the GCX prevents adhesion of leukocytes and platelets to the VEC surface, and this impairment may lead to ocular vasculopathy in diabetes and hypertension
Synthesis of Polycyclic Spirocarbocycles via Acid-Promoted Ring-Contraction/Dearomative Ring-Closure Cascade of Oxapropellanes
We report herein the development of an acid-promoted rearrangement of oxa[4.3.2]propellanes to afford polyaromatic-fused spiro[4.5]carbocycles. DFT calculations suggest that the reaction pathway involves generation of a cyclobutyl cation, ring contraction to the cyclopropylcarbinyl cation, and dearomative ring closure by an internal 2-naphthol moiety. The resulting spirocarbocycles are synthetically valuable, as they could be transformed into two different polycyclic aromatic hydrocarbons via skeletal rearrangement. Syntheses of optically pure spirocarbocycles via a central-to-axial-to-central chirality transfer are also described
Helical Nanographenes Embedded with Contiguous Azulene Units
うねり構造をもつグラフェンナノリボンの精密合成に成功 --非ベンゼノイド構造の新規構築反応を開発--. 京都大学プレスリリース. 2020-07-20.The azulene moiety, composed of contiguous pentagonal and heptagonal rings, is a structural defect that alters the electronic, magnetic, and structural properties of graphenes and graphene nanoribbons. However, nanographenes embedded with an azulene cluster have not been widely investigated because these compounds are difficult to synthesize in their pure form. Herein, azulene-embedded nanographenes bearing a unique cove-type edge were synthesized by a novel synthetic protocol. Experimental and theoretical investigations revealed that this cove edge imparts stable helical chirality, unlike normal cove edges. The in-solution self-association behavior and the structural, electronic, and electrochemical properties were also described in detail
A gas-diffusion cathode coated with oxide-catalyst for polymer electrolyte fuel cells using neither platinum catalyst nor carbon catalyst-support
To overcome the fundamental disadvantages of conventional cathodes for polymer electrolyte fuel cells (PEFCs), such as dissolution and migration of platinum-based catalysts and consumption of the carbon catalyst-support, a substantially novel gas-diffusion cathode has been proposed. The electrode was made of a porous oxide catalyst, which was coated on the inner and outer surfaces of a macro-porous titanium sheet substrate, using neither a platinum catalyst nor carbon catalyst-support. The suitability of this cathode for PEFCs, tested using a highly porous iridium oxide strongly coated on the macro-porous titanium sheet substrate, was confirmed by successful power generation. The gas-diffusion electrode functioned not only as the cathode but also as an anode of a PEFC.ArticleELECTROCHIMICA ACTA. 105:224-229 (2013)journal articl
Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin
Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibirets, namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1–10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds
- …