179 research outputs found

    GTRACE-RS: Efficient Graph Sequence Mining using Reverse Search

    Full text link
    The mining of frequent subgraphs from labeled graph data has been studied extensively. Furthermore, much attention has recently been paid to frequent pattern mining from graph sequences. A method, called GTRACE, has been proposed to mine frequent patterns from graph sequences under the assumption that changes in graphs are gradual. Although GTRACE mines the frequent patterns efficiently, it still needs substantial computation time to mine the patterns from graph sequences containing large graphs and long sequences. In this paper, we propose a new version of GTRACE that enables efficient mining of frequent patterns based on the principle of a reverse search. The underlying concept of the reverse search is a general scheme for designing efficient algorithms for hard enumeration problems. Our performance study shows that the proposed method is efficient and scalable for mining both long and large graph sequence patterns and is several orders of magnitude faster than the original GTRACE

    Prismatic Algorithm for Discrete D.C. Programming Problems

    Full text link
    In this paper, we propose the first exact algorithm for minimizing the difference of two submodular functions (D.S.), i.e., the discrete version of the D.C. programming problem. The developed algorithm is a branch-and-bound-based algorithm which responds to the structure of this problem through the relationship between submodularity and convexity. The D.S. programming problem covers a broad range of applications in machine learning because this generalizes the optimization of a wide class of set functions. We empirically investigate the performance of our algorithm, and illustrate the difference between exact and approximate solutions respectively obtained by the proposed and existing algorithms in feature selection and discriminative structure learning
    • …
    corecore