57 research outputs found

    Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP

    Get PDF
    To better understand the roles played by signaling molecules in the bladder, we established a protocol of intravital imaging of the bladder of mice expressing a Förster/fluorescence resonance energy transfer (FRET) biosensor for extracellular signal-regulated kinase (ERK), which plays critical roles not only in cell growth but also stress responses. With an upright two-photon excitation microscope and a vacuum-stabilized imaging window, cellular ERK activity was visualized in the whole bladder wall, from adventitia to urothelium. We found that bladder distention caused by elevated intravesical pressure (IVP) activated ERK in the urothelium, but not in the detrusor smooth muscle. When bladder distension was prevented, high IVP failed to activate ERK, suggesting that mechanical stretch, but not the high IVP, caused ERK activation. To delineate its molecular mechanism, the stretch-induced ERK activation was reproduced in an hTERT-immortalized human urothelial cell line (TRT-HU1) in vitro. We found that uniaxial stretch raised the ATP concentration in the culture medium and that inhibition of ATP signaling by apyrase or suramin suppressed the stretch-induced ERK activation in TRT-HU1 cells. In agreement with this in vitro observation, pretreatment with apyrase or suramin suppressed the high IVP-induced urothelial ERK activation in vivo. Thus, we propose that mechanical stretch induces intravesical secretion of ATP and thereby activates ERK in the urothelium. Our method of intravital imaging of the bladder of FRET biosensor-expressing mice should open a pathway for the future association of physiological stimuli with the activities of intracellular signaling networks

    Development and validation of prediction model for incident overactive bladder: The Nagahama study.

    Get PDF
    OBJECTIVES We aimed to develop models to predict new-onset overactive bladder in 5 years using a large prospective cohort of the general population. METHODS This is a secondary analysis of a longitudinal cohort study in Japan. The baseline characteristics were measured between 2008 and 2010, with follow-ups every 5 years. We included subjects without overactive bladder at baseline and with follow-up data 5 years later. Overactive bladder was assessed using the overactive bladder symptom score. Baseline characteristics (demographics, health behaviors, comorbidities, and overactive bladder symptom scores) and blood test data were included as predictors. We developed two competing prediction models for each sex based on logistic regression with penalized likelihood (LASSO). We chose the best model separately for men and women after evaluating models' performance in terms of discrimination and calibration using an internal validation via 200 bootstrap resamples and a temporal validation. RESULTS We analyzed 7218 participants (male: 2238, female: 4980). The median age was 60 and 55 years, and the number of new-onset overactive bladder was 223 (10.0%) and 288 (5.8%) per 5 years in males and females, respectively. The in-sample estimates for C-statistic, calibration intercept, and slope for the best performing models were 0.77 (95% confidence interval 0.74-0.80), 0.28 and 1.15 for males, and 0.77 (95% confidence interval 0.74-0.80), 0.20 and 1.08 for females. Internal and temporal validation gave broadly similar estimates of performance, indicating low optimism. CONCLUSION We developed risk prediction models for new-onset overactive bladder among men and women with good predictive ability

    Photodynamic Therapy With YAG-OPO Laser for Early Stage Lung Cancer

    Get PDF
    Photodynamic therapy (PDT) utilizing Photofrin is proving to be effective for the treatment of early stage lung cancers. The effect of PDT utilizing YAG-OPO laser as new light source was evaluated in 26 patients (29 lesions) with early stage lung cancers. YAG-OPO laser is solid state tunable laser which is easy to change wavelength between 620 and 670 nm exciting various kinds of photosensitizers. Moreover, YAG-OPO laser is more reliable, smaller and has less consumables than argon-dye laser or excimer-dye laser. As the result of PDT with YAG-OPO laser, complete remission (CR) was obtained in 82.6% of the 29 lesions, partial remission (PR) in 13.8% and no change (NC) was obtained in 3.4%. We conclude that PDT utilizing YAG-OPO laser is efficacious in the treatment of early stage lung cancers and can achieve complete remission

    Campylobacter jejuni感染はT-84細胞におけるCFTR活性化によるCl⁻分泌亢進を抑制する

    Get PDF
    Campylobacter jejuni causes foodborne disease associated with abdominal pain, gastroenteritis, and diarrhea. These symptoms are induced by bacterial adherence and invasion of host epithelial cells. C. jejuni infection can occur with a low infective dose, suggesting that C. jejuni may have evolved strategies to cope with the bacterial clearance system in the gastrointestinal tract. The mucosa layer is the first line of defense against bacteria. Mucus conditions are maintained by water and anion (especially Cl-) movement. Cystic fibrosis transmembrane conductance regulator (CFTR) is the main Cl- channel transporting Cl- to the lumen. Mutations in CFTR result in dehydrated secreted mucus and bacterial accumulation in the lungs, and recent studies suggest that closely related pathogenic bacteria also may survive in the intestine. However, the relationship between C. jejuni infection and CFTR has been little studied. Here, we used an 125I- efflux assay and measurement of short-circuit current to measure Cl- secretion in C. jejuni-infected T-84 human intestinal epithelial cells. The basic state of Cl- secretion was unchanged by C. jejuni infection, but CFTR activator was observed to induce Cl- secretion suppressed in C. jejuniinfected T-84 cells. The suppression of activated Cl- secretion was bacterial dose-dependent and duration-dependent. A similar result was observed during infection with other C. jejuni strains. The mechanism of suppression may occur by affecting water movement or mucus condition in the intestinal tract. A failure of mucus barrier function may promote bacterial adhesion or invasion of host intestinal epithelial cells, thereby causing bacterial preservation in the host intestinal tract

    EGFR Inhibitor Enhances Cisplatin Sensitivity of Oral Squamous Cell Carcinoma Cell Lines

    Get PDF
    Epidermal growth factor receptor (EGFR) is involved in multiple aspects of cancer cell biology. EGFR has already been identified as an important target for cancer therapy, with various kinds of EGFR inhibitors currently used in treatment of several human cancers. Recently, EGFR and its downstream signaling pathways were identified as being associated with cisplatin sensitivity. In addition, EGFR inhibitors have shown significant promise for patients who failed cisplatin-based therapy. In this study, we investigated whether treatment with an EGFR inhibitor improves cisplatin sensitivity in oral squamous cell carcinoma (OSCC) cell lines. The effects of a combination of AG1478, a specific EGFR tyrosine kinase inhibitor, with cisplatin were evaluated in cultured OSCC cell lines and cisplatin-resistant sublines. Higher expression of EGFR and p-EGFR was found in the two cisplatin-resistant cell lines compared with the corresponding parental cell lines. In addition, augmented inhibition of OSCC cell growth by the combination of AG1478 with cisplatin was found in both cell lines. These results suggest that the combination of an EGFR inhibitor and cisplatin may be useful as a rational strategy for the treatment of patients with oral cancer with acquired cisplatin resistance
    corecore