55 research outputs found

    Molecular Basis and Consequences of the Cytochrome c-tRNA Interaction.

    Get PDF
    The intrinsic apoptosis pathway occurs through the release of mitochondrial cytochrome c to the cytosol, where it promotes activation of the caspase family of proteases. The observation that tRNA binds to cytochrome c revealed a previously unexpected mode of apoptotic regulation. However, the molecular characteristics of this interaction, and its impact on each interaction partner, are not well understood. Using a novel fluorescence assay, we show here that cytochrome c binds to tRNA with an affinity comparable with other tRNA-protein binding interactions and with a molecular ratio of ∼3:1. Cytochrome c recognizes the tertiary structural features of tRNA, particularly in the core region. This binding is independent of the charging state of tRNA but is regulated by the redox state of cytochrome c. Compared with reduced cytochrome c, oxidized cytochrome c binds to tRNA with a weaker affinity, which correlates with its stronger pro-apoptotic activity. tRNA binding both facilitates cytochrome c reduction and inhibits the peroxidase activity of cytochrome c, which is involved in its release from mitochondria. Together, these findings provide new insights into the cytochrome c-tRNA interaction and apoptotic regulation

    Enhanced propagation of Granulicatella adiacens from human oral microbiota by hyaluronan

    Get PDF
    Host determinants for formation/composition of human oral microbiota remain to be clarified, although microorganisms entering the mouth cannot necessarily colonize the oral environment. Here we show that human oral-abundant bacteria degraded host glycosaminoglycans (GAGs) in saliva and gingiva, and certain bacteria significantly grew on hyaluronan (HA), a kind of GAGs. Microbial communities from teeth or gingiva of healthy donors assimilated HA. Metagenomic analysis of human oral microbiota under different carbon sources revealed HA-driven Granulicatella growth. HA-degrading bacterial strains independently isolated from teeth and gingiva were identified as Granulicatella adiacens producing extracellular 130 kDa polysaccharide lyase as a HA-degrading enzyme encoded in a peculiar GAG genetic cluster containing genes for isomerase KduI and dehydrogenase DhuD. These findings demonstrated that GAGs are one of the host determinants for formation/composition of oral microbiota not only for colonization but also for the adaptation to the host niche. Especially, HA enhanced the G. adiacens propagation

    Polyunsaturated fatty acids-enriched lipid from reduced sugar alcohol mannitol by marine yeast Rhodosporidiobolus fluvialis Y2

    Get PDF
    Brown macroalgae is a promising marine biomass for the production of bioethanol and biodiesel fuels. Here we investigate the biochemical processes used by marine oleaginous yeast for assimilating the major carbohydrate found in brown macroalgae. Briefly, yeast Rhodosporidiobolus fluvialis strain Y2 was isolated from seawater and grown in minimal medium containing reduced sugar alcohol mannitol as the sole carbon source with a salinity comparable to seawater. Conditions limiting nitrogen were used to facilitate lipid synthesis. R. fluvialis Y2 yielded 55.1% (w/w) and 39.1% (w/w) of lipids, per dry cell weight, from mannitol in the absence and presence of salinity, respectively. Furthermore, mannitol, as a sugar source, led to an increase in the composition of polyunsaturated fatty acids, linoleic acid (C18:2) and linolenic acid (C18:3), compared to glucose. This suggests that oxidation of mannitol leads to the activation of NADH-dependent fatty acid desaturases in R. fluvialis Y2. Such fatty acid composition may contribute to the cold-flow properties of biodiesel fuels. Our results identified a salt-tolerant oleaginous yeast species with unique metabolic traits, demonstrating a key role as a decomposer in the global carbon cycle through marine ecosystems. This is the first study on mannitol-induced synthesis of lipids enriched with polyunsaturated fatty acids by marine yeast

    Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation

    Get PDF
    Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size

    Examining Factors Associated with Dynapenia/Sarcopenia in Patients with Schizophrenia : A Pilot Case-Control Study

    Get PDF
    Sedentary behavior in patients with schizophrenia causes muscle weakness, is associated with a higher risk of metabolic syndrome, and contributes to mortality risk. This pilot case-control study aims to examine the associated factors for dynapenia/sarcopenia in patients with schizophrenia. The participants were 30 healthy individuals (healthy group) and 30 patients with schizophrenia (patient group), who were matched for age and sex. Descriptive statistics, Welch’s t-test, cross-tabulations, adjusted residuals, Fisher’s exact probability test (extended), and/or odds ratios (ORs) were calculated. In this study, dynapenia was significantly more prevalent in patients with schizophrenia than in healthy individuals. Regarding body water, Pearson’s chi-square value was 4.41 (p = 0.04), and significantly more patients with dynapenia were below the normal range. In particular, body water and dynapenia showed a significant association, with an OR = 3.42 and 95% confidence interval [1.06, 11.09]. Notably, compared with participants of the healthy group, patients with schizophrenia were overweight, had less body water, and were at a higher risk for dynapenia. The impedance method and the digital grip dynamometer used in this study were simple and useful tools for evaluating muscle quality. To improve health conditions for patients with schizophrenia, additional attention should be paid to muscle weakness, nutritional status, and physical rehabilitation

    2D Video Analysis for Active shoulder ROM

    Get PDF
    Aging and its associated problems related to movement impacts the care of people with psychiatric disorders. This study sought to clarify the usefulness of 2D video analysis for evaluating shoulder range of motion (ROM) during upper limb exercises in patients with psychiatric disorders. Subjects (N=54) were patients with psychiatric disorders categorized as the following : having either a high or low activities of daily living (ADL) score using the Barthel Index ; experiencing shoulder ROM limitation, and whether or not compensatory movements were exhibited. Compensatory movement was also considered in patients with Parkinsonism, cerebrovascular disease, and cognitive dysfunction. Shoulder joint ROM was measured using a goniometer and active ROM was captured using ImageJ. No significant difference between passive ROM measured by a goniometer and active ROM measured by ImageJ considering disease groups, ADL level, and shoulder ROM limitation was found. Factoring in compensatory movements, however, significant differences were found between passive and active ROM : existence compensatory movement group, left side (z=-2.30, p=0.02) ; nonexistence compensatory movement group, right side (z=-2.63, p<0.001). Image-evaluating devices help assess ROM in patients with psychiatric disorders, enhancing the development of physical rehabilitation programs to regain critical ADL, sustaining self-care capabilities

    Compound heterozygosity for lossâ ofâ function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation

    Full text link
    Aminoacylâ tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycylâ tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcotâ Marieâ Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Wholeâ exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a lossâ ofâ function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARSâ related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/1/humu23287-sup-0001-text.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/2/humu23287.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/3/humu23287_am.pd

    Allele-specific RNA interference prevents neuropathy in Charcot-Marie-Tooth disease type 2D mouse models.

    Get PDF
    Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases - where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele - is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3-4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix
    corecore