3 research outputs found
Theory of neutrinoless double beta decay
Neutrinoless double beta decay, which is a very old and yet elusive process,
is reviewed. Its observation will signal that lepton number is not conserved
and the neutrinos are Majorana particles. More importantly it is our best hope
for determining the absolute neutrino mass scale at the level of a few tens of
meV. To achieve the last goal certain hurdles have to be overcome involving
particle, nuclear and experimental physics. Nuclear physics is important for
extracting the useful information from the data. One must accurately evaluate
the relevant nuclear matrix elements, a formidable task. To this end, we review
the sophisticated nuclear structure approaches recently been developed, which
give confidence that the needed nuclear matrix elements can be reliably
calculated. From an experimental point of view it is challenging, since the
life times are long and one has to fight against formidable backgrounds. If a
signal is found, it will be a tremendous accomplishment. Then, of course, the
real task is going to be the extraction of the neutrino mass from the
observations. This is not trivial, since current particle models predict the
presence of many mechanisms other than the neutrino mass, which may contribute
or even dominate this process. We will, in particular, consider the following
processes: (i)The neutrino induced, but neutrino mass independent contribution.
(ii)Heavy left and/or right handed neutrino mass contributions.
(iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY)
contributions. We will show that it is possible to disentangle the various
mechanisms and unambiguously extract the important neutrino mass scale, if all
the signatures of the reaction are searched in a sufficient number of nuclear
isotopes.Comment: 104 pages, 6 tables, 25 figures.References added. To appear in ROP
(Reports on Progress in Physics), copyright RO