27 research outputs found

    Effects of 16-Week Consumption of Caffeinated and Decaffeinated Instant Coffee on Glucose Metabolism in a Randomized Controlled Trial

    Get PDF
    Objective. Observational studies have shown a protective association between coffee consumption and type 2 diabetes mellitus whereas caffeine or caffeinated coffee acutely deteriorates glucose tolerance. We investigated the effects of chronic drinking of instant coffee on glucose and insulin concentrations during a 75 g oral glucose tolerance test. Methods. Overweight men with a mild-to-moderate elevation of fasting plasma glucose were randomly allocated to a 16-week intervention of consuming 5 cups of caffeinated (n=17) or decaffeinated (n=15) instant coffee per day or no coffee (n=13). Results. The caffeinated coffee group showed statistically significant decreases in the 2-hour concentrations and the area under the curve of glucose while neither decaffeinated coffee nor coffee group showed such a change. Waist circumstance decreased in the caffeinated coffee group, increased in the decaffeinated coffee group, and did not change in the noncoffee group (P=0.002). With adjustment for the change in waist circumference, caffeinated and decaffeinated coffee consumption were associated with a modest decrease in the postload glucose levels. Conclusion. Both caffeinated and decaffeinated coffee may be protective against deterioration of glucose tolerance

    Identification of prophylactic drugs for oxaliplatin-induced peripheral neuropathy using big data

    Get PDF
    Background: Drug repositioning is a cost-effective method to identify novel disease indications for approved drugs; it requires a shorter developmental period than conventional drug discovery methods. We aimed to identify prophylactic drugs for oxaliplatin-induced peripheral neuropathy by drug repositioning using data from large-scale medical information and life science information databases. Methods: Herein, we analyzed the reported data between 2007 and 2017 retrieved from the FDA’s database of spontaneous adverse event reports (FAERS) and the LINCS database provided by the National Institute of Health. The efficacy of the drug candidates for oxaliplatin-induced peripheral neuropathy obtained from the database analysis was examined using a rat model of peripheral neuropathy. Additionally, we compared the incidence of peripheral neuropathy in patients who received oxaliplatin at the Tokushima University Hospital, Japan. The effects of statins on the animal model were examined in six-week-old male Sprague–Dawley rats and seven or eight-week-old male BALB/C mice. Retrospective medical chart review included clinical data from Tokushima University Hospital from April 2009 to March 2018. Results: Simvastatin, indicated for dyslipidemia, significantly reduced the severity of peripheral neuropathy and oxaliplatin-induced hyperalgesia. In the nerve tissue of model rats, the mRNA expression of Gstm1 increased with statin administration. A retrospective medical chart review using clinical data revealed that the incidence of peripheral neuropathy decreased with statin use. Conclusion and relevance: Thus, drug repositioning using data from large-scale basic and clinical databases enables the discovery of new indications for approved drugs with a high probability of success

    Dimethyl fumarate ameliorates chemotherapy agent-induced neurotoxicity in vitro

    No full text
    Chemotherapy agents such as oxaliplatin, cisplatin, paclitaxel, and bortezomib frequently cause severe peripheral neuropathy and there is currently no effective strategy to prevent this. Dimethyl fumarate (DMF) is a new oral drug for the treatment of multiple sclerosis, and has neuroprotective effects via up-regulation of the nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response. In this study, we investigated the effect of DMF on chemotherapy agent-induced neurodegenerations in cultured cells. We found that DMF and its metabolite monomethyl fumarate (MMF) attenuated oxaliplatin-, cisplatin-, and bortezomib- (but not paclitaxel-) induced inhibition of neurite outgrowth, but had no effect on cell death as a result of these agents in cultured PC12 cells and primary cultured rat dorsal root ganglion (DRG) neurons. Furthermore, Nrf2 DNA binding activity was increased by DMF and MMF in PC12 cells. These findings suggest that DMF, which activates Nrf2 pathway, has a potential protective action against chemotherapy-induced neurotoxicity, particularly neurite impairments. Keywords: Dimethyl fumarate, Neurotoxicity, Oxaliplatin, Chemotherapy agents, Nuclear factor-erythroid-2-related factor 2 (Nrf2

    Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence

    No full text
    Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research

    Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab 2012; 207426; doi

    No full text
    Objective. Observational studies have shown a protective association between coffee consumption and type 2 diabetes mellitus whereas caffeine or caffeinated coffee acutely deteriorates glucose tolerance. We investigated the effects of chronic drinking of instant coffee on glucose and insulin concentrations during a 75 g oral glucose tolerance test. Methods. Overweight men with a mild-to-moderate elevation of fasting plasma glucose were randomly allocated to a 16-week intervention of consuming 5 cups of caffeinated (n = 17) or decaffeinated (n = 15) instant coffee per day or no coffee (n = 13). Results. The caffeinated coffee group showed statistically significant decreases in the 2-hour concentrations and the area under the curve of glucose while neither decaffeinated coffee nor coffee group showed such a change. Waist circumstance decreased in the caffeinated coffee group, increased in the decaffeinated coffee group, and did not change in the noncoffee group (P = 0.002). With adjustment for the change in waist circumference, caffeinated and decaffeinated coffee consumption were associated with a modest decrease in the postload glucose levels. Conclusion. Both caffeinated and decaffeinated coffee may be protective against deterioration of glucose tolerance

    Inhibitory Effect of α1 Receptor Antagonists on Paclitaxel-Induced Peripheral Neuropathy in a Rodent Model and Clinical Database

    No full text
    The anticancer drug, paclitaxel, is widely used for ovarian, breast, non-small cell lung, and gastric cancers; however, it induces peripheral neuropathy as a side effect. There is insufficient evidence-based prophylaxis, and new prophylaxis and treatment methods are required. We examined the effect of α1-receptor antagonists on paclitaxel-induced peripheral neuropathy using Sprague-Dawley rats and a large adverse event database. The repeated administration of doxazosin or tamsulosin significantly reduced the response threshold to paclitaxel administration in animal models. In the sciatic nerve tissue, axonal degeneration and myelopathy were significantly suppressed. Furthermore, an analysis of the Food and Drug Administration Adverse Event Reporting System (FAERS) database suggested that the group using α1 inhibitors showed a lower reporting rate for paclitaxel-related peripheral neuropathy than the group that did not use these inhibitors (odds ratio (95% confidence interval): tamsulosin 0.21 (0.08–0.56), p < 0.01, doxazosin 0.41 (0.10–1.65), p = 0.195; any α1 receptor antagonist 0.54 (0.38–0.76), p < 0.01). Thus, doxazosin and tamsulosin may inhibit the development of paclitaxel-induced peripheral neuropathy by suppressing neurodegeneration, particularly axonal degeneration and myelopathy

    Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence

    No full text
    Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research

    Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab 2012; 207426; doi

    No full text
    Objective. Observational studies have shown a protective association between coffee consumption and type 2 diabetes mellitus whereas caffeine or caffeinated coffee acutely deteriorates glucose tolerance. We investigated the effects of chronic drinking of instant coffee on glucose and insulin concentrations during a 75 g oral glucose tolerance test. Methods. Overweight men with a mild-to-moderate elevation of fasting plasma glucose were randomly allocated to a 16-week intervention of consuming 5 cups of caffeinated (n = 17) or decaffeinated (n = 15) instant coffee per day or no coffee (n = 13). Results. The caffeinated coffee group showed statistically significant decreases in the 2-hour concentrations and the area under the curve of glucose while neither decaffeinated coffee nor coffee group showed such a change. Waist circumstance decreased in the caffeinated coffee group, increased in the decaffeinated coffee group, and did not change in the noncoffee group (P = 0.002). With adjustment for the change in waist circumference, caffeinated and decaffeinated coffee consumption were associated with a modest decrease in the postload glucose levels. Conclusion. Both caffeinated and decaffeinated coffee may be protective against deterioration of glucose tolerance
    corecore