889 research outputs found
The importance of early arthroscopy in athletes with painful cartilage lesions of the ankle: a prospective study of 61 consecutive cases
BACKGROUND
Ankle sprains are common in sports and can sometimes result in a persistent pain condition.
PURPOSE
Primarily to evaluate clinical symptoms, signs, diagnostics and outcomes of surgery for symptomatic chondral injuries of the talo crural joint in athletes. Secondly, in applicable cases, to evaluate the accuracy of MRI in detecting these injuries. Type of study: Prospective consecutive series.
METHODS
Over around 4 years we studied 61 consecutive athletes with symptomatic chondral lesions to the talocrural joint causing persistent exertion ankle pain.
RESULTS
43% were professional full time athletes and 67% were semi-professional, elite or amateur athletes, main sports being soccer (49%) and rugby (14%). The main subjective complaint was exertion ankle pain (93%). Effusion (75%) and joint line tenderness on palpation (92%) were the most common clinical findings. The duration from injury to arthroscopy for 58/61 cases was 7 months (5.7–7.9). 3/61 cases were referred within 3 weeks from injury. There were in total 75 cartilage lesions. Of these, 52 were located on the Talus dome, 17 on the medial malleolus and 6 on the Tibia plafond. Of the Talus dome injuries 18 were anteromedial, 14 anterolateral, 9 posteromedial, 3 posterolateral and 8 affecting mid talus. 50% were grade 4 lesions, 13.3% grade 3, 16.7% grade 2 and 20% grade 1. MRI had been performed pre operatively in 26/61 (39%) and 59% of these had been interpreted as normal. Detection rate of cartilage lesions was only 19%, but subchondral oedema was present in 55%. At clinical follow up average 24 months after surgery (10–48 months), 73% were playing at pre-injury level. The average return to that level of sports after surgery was 16 weeks (3–32 weeks). However 43% still suffered minor symptoms.
CONCLUSION
Arthroscopy should be considered early when an athlete presents with exertion ankle pain, effusion and joint line tenderness on palpation after a previous sprain. Conventional MRI is not reliable for detecting isolated cartilage lesions, but the presence of subchondral oedema should raise such suspicion
Composite Fermion Pairing in Bilayer Quantum Hall Systems
We derive the effective Hamiltonian for the composite fermion in double-layer
quantum Hall systems with inter-layer tunneling at total Landau-level filling
factor , where is an integer. We find that the ground state is the
triplet p-wave BCS pairing state of the composite fermions. At , the
ground state of the system evolves from the Halperin -state toward the
Pfaffian-state with increasing the tunneling amplitude. On the other hand, at
, the pairing state is uniquely determined independent of tunneling
amplitude.Comment: 13 pages, 2 figure
Thermodynamic properties of spontaneous magnetization in Chern-Simons QED_3
The spontaneous magnetization in Chern-Simons QED_3 is discussed in a finite
temperature system. The thermodynamical potential is analyzed within the weak
field approximation and in the fermion massless limit. We find that there is a
linear term with respect to the magnetic field with a negative coefficient at
any finite temperature. This implies that the spontaneous magnetic field does
not vanish even at high temperature. In addition, we examine the photon
spectrum in the system. We find that the bare Chern-Simons coefficient is
cancelled by the radiative effects. The photons then become topologically
massless according to the magnetization, though they are massive by finite
temperature effects. Thus the magnetic field is a long-range force without the
screening even at high temperature.Comment: 32 pages, Latex, 4 eps figure
Supersymmetry Breaking in Chern-Simons-matter Theories
Some of supersymmetric Chern-Simons theories are known to exhibit
supersymmetry breaking when the Chern-Simons level is less than a certain
number. The mechanism of the supersymmetry breaking is, however, not clear from
the field theory viewpoint. In this paper, we discuss vacuum states of pure Chern-Simons theory and Chern-Simons-matter theories of
quiver type using related theories in which Chern-Simons terms are replaced
with (anti-)fundamental chiral multiplets. In the latter theories,
supersymmetry breaking can be shown to occur by examining that the vacuum
energy is non-zero.Comment: 17 pages, 3 figures, v2) references adde
Analysis of adam12-mediated ephrin-a1 cleavage and its biological functions
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis
Steady state properties of a driven granular medium
We study a two-dimensional granular system where external driving force is
applied to each particle in the system in such a way that the system is driven
into a steady state by balancing the energy input and the dissipation due to
inelastic collision between particles. The velocities of the particles in the
steady state satisfy the Maxwellian distribution. We measure the
density-density correlation and the velocity-velocity correlation functions in
the steady state and find that they are of power-law scaling forms. The
locations of collision events are observed to be time-correlated and such a
correlation is described by another power-law form. We also find that the
dissipated energy obeys a power-law distribution. These results indicate that
the system evolves into a critical state where there are neither characteristic
spatial nor temporal scales in the correlation functions. A test particle
exhibits an anomalous diffusion which is apparently similar to the Richardson
law in a three-dimensional turbulent flow.Comment: REVTEX, submitted to Phys. Rev.
Interface dynamics for layered structures
We investigate dynamics of large scale and slow deformations of layered
structures. Starting from the respective model equations for a non-conserved
system, a conserved system and a binary fluid, we derive the interface
equations which are a coupled set of equations for deformations of the
boundaries of each domain. A further reduction of the degrees of freedom is
possible for a non-conserved system such that internal motion of each domain is
adiabatically eliminated. The resulting equation of motion contains only the
displacement of the center of gravity of domains, which is equivalent to the
phase variable of a periodic structure. Thus our formulation automatically
includes the phase dynamics of layered structures. In a conserved system and a
binary fluid, however, the internal motion of domains turns out to be a slow
variable in the long wavelength limit because of concentration conservation.
Therefore a reduced description only involving the phase variable is not
generally justified.Comment: 16 pages; Latex; revtex aps; one figure. Revision: screened coulomb
interaction with coulomb limi
Velocity and density profiles of granular flow in channels using lattice gas automaton
We have performed two-dimensional lattice-gas-automaton simulations of
granular flow between two parallel planes. We find that the velocity profiles
have non-parabolic distributions while simultaneously the density profiles are
non-uniform. Under non-slip boundary conditions, deviation of velocity profiles
from the parabolic form of newtonian fluids is found to be characterized solely
by ratio of maximal velocity at the center to the average velocity, though the
ratio depends on the model parameters in a complex manner. We also find that
the maximal velocity () at the center is a linear function of the
driving force (g) as with non-zero in
contrast with newtonian fluids. Regarding density profiles, we observe that
densities near the boundaries are higher than those in the center. The width of
higher densities (above the average density) relative to the channel width is a
decreasing function of a variable which scales with the driving force (g),
energy dissipation parameter () and the width of the system (L) as
with exponents and . A phenomenological theory based on a scaling argument is presented to
interpret these findings.Comment: Latex, 15 figures, to appear in PR
Salmonella exploits HLA-B27 and host Unfolded Protein Responses to promote intracellular replication
Objective Salmonella enterica infections can lead to Reactive Arthritis (ReA), which can exhibit an association with human leucocyte antigen (HLA)-B*27:05, a molecule prone to misfolding and initiation of the unfolded protein response (UPR). This study examined how HLA-B*27:05 expression and the UPR affect the Salmonella life-cycle within epithelial cells.
Methods Isogenic epithelial cell lines expressing two copies of either HLA-B*27:05 and a control HLA-B*35:01 heavy chain (HC) were generated to determine the effect on the Salmonella infection life-cycle. A cell line expressing HLA-B*27:05.HC physically linked to the light chain beta-2-microglobulin and a specific peptide (referred to as a single chain trimer, SCT) was also generated to determine the effects of HLA-B27 folding status on S. enterica life-cycle. XBP-1 venus and AMP dependent Transcription Factor (ATF6)-FLAG reporters were used to monitor UPR activation in infected cells. Triacin C was used to inhibit de novo lipid synthesis during UPR, and confocal imaging of ER tracker stained membrane allowed quantification of glibenclamide-associated membrane.
Results S. enterica demonstrated enhanced replication with an altered cellular localisation in the presence of HLA-B*27:05.HC but not in the presence of HLA-B*27:05.SCT or HLA-B*35:01. HLA-B*27:05.HC altered the threshold for UPR induction. Salmonella activated the UPR and required XBP-1 for replication, which was associated with endoreticular membrane expansion and lipid metabolism.
Conclusions HLA-B27 misfolding and a UPR cellular environment are associated with enhanced Salmonella replication, while Salmonella itself can activate XBP-1 and ATF6. These data provide a potential mechanism linking the life-cycle of Salmonella with the physicochemical properties of HLA-B27 and cellular events that may contribute to ReA pathogenesis. Our observations suggest that the UPR pathway maybe targeted for future therapeutic intervention
- …