164 research outputs found

    Properties of Nb3Al Wires Processed by Double Rapid Heating and Quenching

    Get PDF
    AbstractWe have been developing Nb3Al wires processed by rapid heating and quenching for a number of years as promising candidates for use in future high-field accelerator magnets. These wires have better strain and stress tolerances than Nb3Sn wires do, but to meet the demands of future accelerator magnet designs, it is necessary to further improve their performance. In particular,it is necessary to increase their non-copper critical current density in 12-20T fields. To pursue this goal, we introduced double rapid heating and quenching (DRHQ) treatment into the fabrication process for Nb3Al wires, and studied the mechanical and superconducting properties of the resulting DRHQ-processed wires

    Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity: a randomized trial

    Get PDF
    IMPORTANCE: Sociocommunicational deficits make it difficult for individuals with autism spectrum disorders (ASD) to understand communication content with conflicting verbal and nonverbal information. Despite growing prospects for oxytocin as a therapeutic agent for ASD, no direct neurobiological evidence exists for oxytocin's beneficial effects on this core symptom of ASD. This is slowing clinical application of the neuropeptide. OBJECTIVE: To directly examine whether oxytocin has beneficial effects on the sociocommunicational deficits of ASD using both behavioral and neural measures. DESIGN, SETTING, AND PARTICIPANTS: At the University of Tokyo Hospital, we conducted a randomized, double-blind, placebo-controlled, within-subject-crossover, single-site experimental trial in which intranasal oxytocin and placebo were administered. A total of 40 highly functioning men with ASD participated and were randomized in the trial. INTERVENTIONS: Single-dose intranasal administration of oxytocin (24 IU) and placebo. MAIN OUTCOMES AND MEASURES: Using functional magnetic resonance imaging, we examined effects of oxytocin on behavioral neural responses of the participants to a social psychological task. In our previous case-control study using the same psychological task, when making decisions about social information with conflicting verbal and nonverbal contents, participants with ASD made judgments based on nonverbal contents less frequently with longer time and could not induce enough activation in the medial prefrontal cortex. Therefore, our main outcomes and measures were the frequency of the nonverbal information-based judgments (NVJs), the response time for NVJs, and brain activity of the medial prefrontal cortex during NVJs. RESULTS: Intranasal oxytocin enabled the participants to make NVJs more frequently (P = .03) with shorter response time (P = .02). During the mitigated behavior, oxytocin increased the originally diminished brain activity in the medial prefrontal cortex (P < .001). Moreover, oxytocin enhanced functional coordination in the area (P < .001), and the magnitude of these neural effects was predictive of the behavioral effects (P ≤ .01). CONCLUSIONS AND RELEVANCE: These findings provide the first neurobiological evidence for oxytocin's beneficial effects on sociocommunicational deficits of ASD and give us the initial account for neurobiological mechanisms underlying any beneficial effects of the neuropeptide. TRIAL REGISTRATION: umin.ac.jp/ctr Identifier: UMIN000002241 and UMIN000004393

    Clinical significance of midkine expression in pancreatic head carcinoma

    Get PDF
    Midkine (MK) is a heparin-binding growth factor and a product of a retinoic acid-responsive gene. Midkine is overexpressed in many carcinomas and thought to play an important role in carcinogenesis. However, no studies have been focussed on the role of MK in pancreatic carcinoma. This study sought to evaluate the clinical significance of MK expression in pancreatic head carcinoma, including the relationship between immunohistochemical expression and clinicopathologic factors such as prognosis. Immunohistochemical expression of MK and CD34 was evaluated in pancreatic head carcinoma specimens from 75 patients who underwent surgical resection. Midkine was expressed in 53.3% of patients. Midkine expression was significantly correlated with venous invasion, microvessel density, and liver metastasis (P=0.0063, 0.0025, and 0.0153, respectively). The 5-year survival rate was significantly lower for patients positive for MK vs patients negative for MK (P=0.0073). Multivariate analysis revealed that MK expression was an independent prognostic factor (P=0.0033). This is the first report of an association between MK expression and pancreatic head carcinoma. Midkine may play an important role in the progression of pancreatic head carcinoma, and evaluation of MK expression is useful for predicting malignant properties of pancreatic head carcinoma

    Isolation and Characterization of Human Trophoblast Side-Population (SP) Cells in Primary Villous Cytotrophoblasts and HTR-8/SVneo Cell Line

    Get PDF
    Recently, numerous studies have identified that immature cell populations including stem cells and progenitor cells can be found among “side-population” (SP) cells. Although SP cells isolated from some adult tissues have been reported elsewhere, isolation and characterization of human trophoblast SP remained to be reported. In this study, HTR-8/SVneo cells and human primary villous cytotrophoblasts (vCTBs) were stained with Hoechst 33342 and SP and non-SP (NSP) fractions were isolated using a cell sorter. A small population of SP cells was identified in HTR-8/SVneo cells and in vCTBs. SP cells expressed several vCTB-specific markers and failed to express syncytiotrophoblast (STB) or extravillous cytotrophopblast (EVT)-specific differentiation markers. SP cells formed colonies and proliferated on mouse embryonic fibroblast (MEF) feeder cells or in MEF conditioned medium supplemented with heparin/FGF2, and they also showed long-term repopulating property. SP cells could differentiate into both STB and EVT cell lineages and expressed several differentiation markers. Microarray analysis revealed that IL7R and IL1R2 were exclusively expressed in SP cells and not in NSP cells. vCTB cells sorted as positive for both IL7R and IL1R2 failed to express trophoblast differentiation markers and spontaneously differentiated into both STB and EVT in basal medium. These features shown by the SP cells suggested that IL7R and IL1R2 are available as markers to detect the SP cells and that vCTB progenitor cells and trophoblast stem cells were involved in the SP cell population

    Prospective assessment of Y-chromosome microdeletions and reproductive outcomes among infertile couples of Japanese and African origin

    Get PDF
    BACKGROUND: To compare the frequency of Y-chromosome microdeletions in Japanese and African azoospermic and oligozoospermic men and describe embryo characteristics and reproductive outcome following in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). METHODS: Our study was performed prospectively at two centers, a private IVF clinic and a university hospital. Japanese and African (Tanzanian) men with nonobstructive azoospermia (NOA) and oligozoospermia (concentration < 5 × 10(6 )/ml) were evaluated for Y-chromosome microdeletions (n = 162). Of the 47 men with NOA, 26 were Japanese and 21 were Africans. Of the 115 men with oligozoospermia, 87 were Japanese and 28 were Africans. Reproductive outcomes of patients with Y-chromosome microdeletions were then compared with those of 19 IVF+ICSI cycles performed on couples with Y-chromosome intact males/tubal factor infertility which served as a control group. RESULTS: Seven azoospermic and oligozoospermic patients had Y-chromosome deletions; the total number of deletions in the AZFc region was five. There was only one deletion in the AZFa region and one complete deletion involving all three regions (AZFa, b, and c) within AZF. In our study population, microdeletion frequency among Japanese men was 6.2% (95% CI, 4.25% – 14.45%), whereas no deletions were identified in the African group (95% CI, 0.0% – 7.27%). The difference between the two groups was not statistically significant, however. Embryos derived from ICSI utilizing sperm with Y-chromosome microdeletion showed reduced rates of fertilization, blastocyst development, implantation, and pregnancy compared to the Y-chromosome intact group, although these observed differences were not statistically significant. CONCLUSION: The observed frequency of Y-chromosome microdeletion was 6.2% among Japanese azoospermic and oligozoospermic males; no microdeletions were identified among our African study patients. In this population of couples undergoing IVF+ICSI, there was no statistically significant difference in embryo characteristics or pregnancy outcome between patients with Y-chromosome microdeletion and those with an intact Y-chromosome

    The carboxy-terminal fragment of α1A calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4–20Q; SCA6: 20–33Q) in the carboxyl(C)-terminal cytoplasmic domain of the α1A voltage-dependent calcium channel (Cav2.1). Although a 75–85-kDa Cav2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Cav2.1 in human SCA6 brains. New antibodies against the Cav2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Cav2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus

    β-Catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions

    Get PDF
    Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/β-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as β-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A1 (PLA1), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of β-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA1 gene, cortical β-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of β-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of β-catenin
    corecore