154 research outputs found

    Leader (L) and L* proteins of Theiler's murine encephalomyelitis virus (TMEV) and their regulation of the virus' biological activities

    Get PDF
    Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups on the basis of their different biological activities. GDVII subgroup strains produce fatal poliomyelitis in mice without virus persistence or demyelination. In contrast, TO subgroup strains induce demyelinating disease with virus persistence in the spinal cords of weanling mice. Two proteins, whose open reading frames are located in the N-terminus of the polyprotein, recently have been reported to be important for TMEV biological activities. One is leader (L) protein and is processed from the most N-terminus of the polyprotein; its function is still unknown. Although the homology of capsid proteins between DA (a representative strain of TO subgroup) and GDVII strains is over 94% at the amino acid level, that of L shows only 85%. Therefore, L is thought to be a key protein for the subgroup-specific biological activities of TMEV. Various studies have demonstrated that L plays important roles in the escape of virus from host immune defenses in the early stage of infection. The second protein is a 17–18 kDa protein, L*, which is synthesized out-of-frame with the polyprotein. Only TO subgroup strains produce L* since GDVII subgroup strains have an ACG rather than AUG at the initiation site and therefore do not synthesize L*. 'Loss and gain of function' experiments demonstrate that L* is essential for virus growth in macrophages, a target cell for TMEV persistence. L* also has been demonstrated to be necessary for TMEV persistence and demyelination. Further analysis of L and L* will help elucidate the pathomechanism(s) of TMEV-induced demyelinating disease

    Observation of an Inner-Shell Orbital Clock Transition in Neutral Ytterbium Atoms

    Get PDF
    内殻電子が励起する時計遷移の初観測に成功 --新奇な光格子時計を用いた超高感度な新物理探索へ--. 京都大学プレスリリース. 2023-04-17.We observe a weakly allowed optical transition of atomic ytterbium from the ground state to the metastable state 4f¹³5d6s² (J=2) for all five bosonic and two fermionic isotopes with resolved Zeeman and hyperfine structures. This inner-shell orbital transition has been proposed as a new frequency standard as well as a quantum sensor for new physics. We find magic wavelengths through the measurement of the scalar and tensor polarizabilities and reveal that the measured trap lifetime in a three-dimensional optical lattice is 1.9(1) s, which is crucial for precision measurements. We also determine the g factor by an interleaved measurement, consistent with our relativistic atomic calculation. This work opens the possibility of an optical lattice clock with improved stability and accuracy as well as novel approaches for physics beyond the standard model

    Manipulation of Non-classical Atomic Spin States

    Full text link
    We report successful manipulation of non-classical atomic spin states. We generate squeezed spin states by a spin quantum nondemolition measurement, and apply an off-resonant circularly-polarized light pulse to the atoms. By changing the pulse duration, we have clearly observed a rotation of anisotropic quantum noise distribution in good contrast with the case of manipulation of a coherent spin state where the quantum noise distribution is always isotropic. This is an important step for quantum state tomography, quantum swapping, and precision spectroscopic measurement

    Dopamine D_1 Receptors and Nonlinear Probability Weighting in Risky Choice

    Get PDF
    Misestimating risk could lead to disadvantaged choices such as initiation of drug use (or gambling) and transition to regular drug use (or gambling). Although the normative theory in decision-making under risks assumes that people typically take the probability-weighted expectation over possible utilities, experimental studies of choices among risks suggest that outcome probabilities are transformed nonlinearly into subjective decision weights by a nonlinear weighting function that overweights low probabilities and underweights high probabilities. Recent studies have revealed the neurocognitive mechanism of decision-making under risk. However, the role of modulatory neurotransmission in this process remains unclear. Using positron emission tomography, we directly investigated whether dopamine D_1 and D_2 receptors in the brain are associated with transformation of probabilities into decision weights in healthy volunteers. The binding of striatal D_1 receptors is negatively correlated with the degree of nonlinearity of weighting function. Individuals with lower striatal D_1 receptor density showed more pronounced overestimation of low probabilities and underestimation of high probabilities. This finding should contribute to a better understanding of the molecular mechanism of risky choice, and extreme or impaired decision-making observed in drug and gambling addiction

    On the Ground State of the Deuteron

    No full text

    Theiler's Murine Encephalomyelitis Virus Leader Protein Amino Acid Residue 57 Regulates Subgroup-Specific Virus Growth on BHK-21 Cells

    No full text
    Strains of Theiler's murine encephalomyelitis virus (TMEV) are divided into two subgroups, TO and GDVII. TMEV strains show subgroup-specific virus growth and cell tropism and induce subgroup-specific diseases. Using site-directed mutagenesis, we demonstrated that the amino acid at position 57 of the leader protein (L(57)), which is located at the most N-terminal part of the polyprotein, regulates subgroup-specific virus growth on BHK-21 cells. Further study suggested that L(57) may regulate viral RNA encapsidation, although it does not affect the synthesis of viral proteins or the assembly of viral intermediates

    sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi

    Get PDF
    AbstractWe characterized a medaka mutant, vertebra imperfecta (vbi), that displays skeletal defects such as craniofacial malformation and delay of vertebra formation. Positional cloning analysis revealed a nonsense mutation in sec24d encoding a component of the COPII coat that plays a role in anterograde protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Immunofluorescence analysis revealed the accumulation of type II collagen in the cytoplasm of craniofacial chondrocytes, notochord cells, and the cells on the myoseptal boundary in vbi mutants. Electron microscopy analysis revealed dilation of the ER and defective secretion of ECM components from cells in both the craniofacial cartilage and notochord in vbi. The higher vertebrates have at least 4 sec24 paralogs; however, the function of each paralog in development remains unknown. sec24d is highly expressed in the tissues that are rich in extracellular matrix and is essential for the secretion of ECM component molecules leading to the formation of craniofacial cartilage and vertebra
    corecore