77 research outputs found

    A novel LIM protein Cal promotes cardiac differentiation by association with CSX/NKX2-5

    Get PDF
    The cardiac homeobox transcription factor CSX/NKX2-5 plays an important role in vertebrate heart development. Using a yeast two-hybrid screening, we identified a novel LIM domain–containing protein, named CSX-associated LIM protein (Cal), that interacts with CSX/NKX2-5. CSX/NKX2-5 and Cal associate with each other both in vivo and in vitro, and the LIM domains of Cal and the homeodomain of CSX/NKX2-5 were necessary for mutual binding. Cal itself possessed the transcription-promoting activity, and cotransfection of Cal enhanced CSX/NKX2-5–induced activation of atrial natriuretic peptide gene promoter. Cal contained a functional nuclear export signal and shuttled from the cytoplasm into the nucleus in response to calcium. Accumulation of Cal in the nucleus of P19CL6 cells promoted myocardial cell differentiation accompanied by increased expression levels of the target genes of CSX/NKX2-5. These results suggest that a novel LIM protein Cal induces cardiomyocyte differentiation through its dynamic intracellular shuttling and association with CSX/NKX2-5

    浸潤および血管新生を通しての人肝細胞癌の進行におけるケラチン19分子の役割

    Get PDF
    BACKGROUND: Keratin (K) 19-positive hepatocellular carcinoma (HCC) is well known to have a higher malignant potential than K19-negative HCC: However, the molecular mechanisms involved in K19-mediated progression of HCC remain unclear. We attempted to clarify whether K19 directly affects cell survival and invasiveness in association with cellular senescence or epithelial-mesenchymal transition (EMT) in K19-positive HCC. METHODS: K19 expression was analysed in 136 HCC surgical specimens. The relationship of K19 with clinicopathological factors and survival was analysed. Further, the effect of K19 on cell proliferation, invasion, and angiogenesis was examined by silencing K19 in the human HCC cell lines, HepG2, HuH-7, and PLC/PRF/5. Finally, we investigated HCC invasion, proliferation, and angiogenesis using K19-positive HCC specimens. RESULTS: Analysis of HCC surgical specimens revealed that K19-positive HCC exhibited higher invasiveness, metastatic potential, and poorer prognosis. In vitro experiments using the human HCC cell lines revealed that K19 silencing suppressed cell growth by inducting apoptosis or upregulating p16 and p27, resulting in cellular senescence. In addition, transfection with K19 siRNA upregulated E-cadherin gene expression, significantly inhibited the invasive capacity of the cells, downregulated angiogenesis-related molecules such as vasohibin-1 (VASH1) and fibroblast growth factor 1 (FGFR1), and upregulated vasohibin-2 (VASH2). K19-positive HCC specimens exhibited a high MIB-1 labelling index, decreased E-cadherin expression, and high microvessel density around cancer foci. CONCLUSION: K19 directly promotes cancer cell survival, invasion, and angiogenesis, resulting in HCC progression and poor clinical outcome. K19 may therefore be a novel drug target for the treatment of K19-positive HCC.博士(医学)・乙第1399号・平成29年3月15日© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    2014~2015年度 教育研究高度化促進費 研究成果報告書「わが国の新たな情報法制の定立のための比較法研究と理解促進の取組」

    Get PDF
    目次1.研究の目的と研究成果の概要2.研究成果(1) シンポジウム(2) 論文・第一論文 髙野一彦「新しい法制度に対応したコンプライアンス・プログラムの定立を」衆知2017.1-2 号、PHP研究所、2016年、66~69頁・第二論文 髙野一彦 「情報危機管理とビッグデータ : わが国の個人情報保護法制への提言と企業コンプライアンス」、関西大学社会安全学部編『リスク管理のための社会安全学』ミネルヴァ書房、2015年、21~46頁・第三論文 新保史生「改正個人情報保護法の論点」憲法学会、憲法研究48号、2016年、29-55頁・第四論文 河野和宏「大学生に対する違法動画視聴の防止対策に関する一検討 : 不正のトライアングル理論と状況的犯罪予防論からの検討」電子情報通信学会技術研究報告、SSS2018-15、2018年9~12頁・第五論文 新井健介・河野和宏・馬場口登「推薦対象の属性から構築した階層構造を用いたTF-IDF法による匿名化処理」電子情報通信学会技術研究報告vol. 115、no. 479、EMM2015-81、2016年、31~36頁・第六論文 新井健介・河野和宏・馬場口登「TF-IDF法によるユーザへの情報推薦のための匿名化処理」電子情報通信学会技術研究報告vol. 115、no. 38、IT2015-10、EMM2015-10、2015年、51~56頁3.謝

    Validation of MALDI-TOF MS devices in reanalysis of unidentified pathogenic bacteria detected in blood cultures

    Get PDF
    In hospital microbial laboratories, morphological and biochemical analyses are performed to identify pathogenic microbes;however, these procedures lack rapidity and accuracy. Recently, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been clinically utilized, and is expected to enable rapid and accurate microbial identification. We aimed to validate two MALDI-TOF MS devices available in Japan: the VITEK-MS (BioMérieux) and the Microflex LT (Bruker Daltonics). Clinically isolated bacteria, 100 samples in all, detected in blood cultures but incompletely identified by conventional procedures, were reanalyzed using the two devices. The VITEK-MS and Microflex LT, respectively, identified 49% (49/100) and 80% (80/100) of the tested bacteria at the species level, as well as 96% (96/100) and 95% (95/100) at the genus level. Among those reidentified strains, 26% (26/100) at the species level and 88% (88/100) at the genus level were concordant with each other, though three strains were unmatched. Moreover, four bacterial strains were unable to be identified using the VITEK-MS, versus five using the Microflex LT. MALDI-TOF MS devices can provide more rapid and accurate bacterial identification than ever before;however, the characteristics of each system were slightly different;therefore, it is necessary to understand the difference in performance of MALDI-TOF MS models

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore