10 research outputs found
Low-Dose Tramadol and Non-Steroidal Anti-Inflammatory Drug Combination Therapy Prevents the Transition to Chronic Low Back Pain
Study DesignRetrospective study.PurposeTo determine whether low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy could prevent the transition of acute low back pain to chronic low back pain.Overview of LiteratureInadequately treated early low back pain transitions to chronic low back pain occur in approximately 30% of affected individuals. The administration of non-steroidal anti-inflammatory drugs is effective for treatment of low back pain in the early stages. However, the treatment of low back pain that is resistant to non-steroidal anti-inflammatory drugs is challenging.MethodsPatients who presented with acute low back pain at our hospital were considered for inclusion in this study. After the diagnosis of acute low back pain, non-steroidal anti-inflammatory drug administration was started. Forty patients with a visual analog scale score of >5 for low back pain 1 month after treatment were finally enrolled. The first 20 patients were included in a non-steroidal anti-inflammatory drug group, and they continued non-steroidal anti-inflammatory drug therapy for 1 month. The next 20 patients were included in a combination group, and they received low-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy for 1 month. The incidence of adverse events and the improvement in the visual analog scale score at 2 months after the start of treatment were analyzed.ResultsNo adverse events were observed in the non-steroidal anti-inflammatory drug group. In the combination group, administration was discontinued in 2 patients (10%) due to adverse events immediately following the start of tramadol administration. At 2 months, the improvement in the visual analog scale score was greater in the combination group than in the non-steroidal anti-inflammatory drug group (p<0.001).ConclusionsLow-dose tramadol plus non-steroidal anti-inflammatory drug combination therapy might decrease the incidence of adverse events and prevent the transition of acute low back pain to chronic low back pain
Dose Optimization for Single Intradiscal Administration of the Tumor Necrosis Factor-α Inhibitor, Etanercept, in Rat Disc Injury Models
Study DesignExperimental animal study.PurposeWe aimed to determine the optimal dose of a single direct injection of the tumor necrosis factor (TNF)-α inhibitor, etanercept, by using the rat model of degenerative intervertebral disc from injury.Overview of LiteratureThe pain-related peptide expression was suppressed in the etanercept (100 µg and 1,000 µg)-administered groups in a dose-dependent manner.MethodsThe neurotracer FluoroGold (FG) was applied to the surfaces of L4/5 discs to label their innervating dorsal root ganglion (DRG) neurons (n=50). Ten rats were included in the nonpunctured disc sham surgery control group, whereas the other 40 were included in the experimental group in which intervertebral discs were punctured with a 23-gauge needle. Saline or etanercept (10 µg, 100 µg, or 1,000 µg) was injected into the punctured discs (n=10 for each treatment). After 14 days of surgery, DRGs from L1 to L6 were harvested, sectioned, and immunostained for calcitonin gene-related peptide (CGRP). The proportion of FG-labeled CGRP-immunoreactive DRG neurons was evaluated in all the groups.ResultsThere were no significant differences between the puncture+saline group and the puncture+10-µg etanercept group (p >0.05). However, a significant decrease in the percentage of FG and CGRP double-positive cells in FG-positive cells was observed in the etanercept (100 µg and 1,000 µg)-administered groups in a dose-dependent manner (p <0.05).ConclusionsWhen a low dose of the TNF-α inhibitor (10 µg of etanercept) was directly administered to the rat intervertebral disc in the rat model of degenerative intervertebral disc from injury, no suppressive effect on the pain-related peptide expression was observed. However, when a higher dose of etanercept (100 µg and 1,000 µg) was administered, the pain-related peptide expression was suppressed in a dose-dependent manner
Estimation of salt intake from spot urine samples in patients with chronic kidney disease
Abstract Background High salt intake in patients with chronic kidney disease (CKD) may cause high blood pressure and increased albuminuria. Although, the estimation of salt intake is essential, there are no easy methods to estimate real salt intake. Methods Salt intake was assessed by determining urinary sodium excretion from the collected urine samples. Estimation of salt intake by spot urine was calculated by Tanaka’s formula. The correlation between estimated and measured sodium excretion was evaluated by Pearson´s correlation coefficients. Performance of equation was estimated by median bias, interquartile range (IQR), proportion of estimates within 30% deviation of measured sodium excretion (P30) and root mean square error (RMSE).The sensitivity and specificity of estimated against measured sodium excretion were separately assessed by receiver-operating characteristic (ROC) curves. Results A total of 334 urine samples from 96 patients were examined. Mean age was 58 ± 16 years, and estimated glomerular filtration rate (eGFR) was 53 ± 27 mL/min. Among these patients, 35 had CKD stage 1 or 2, 39 had stage 3, and 22 had stage 4 or 5. Estimated sodium excretion significantly correlated with measured sodium excretion (R = 0.52, P 170 mEq/day (AUC 0.835). Conclusions The present study demonstrated that spot urine can be used to estimate sodium excretion, especially in patients with low eGFR.</p
DPP-4 inhibition with linagliptin ameliorates the progression of premature aging in klotho−/− mice
Abstract Background The potential of anti-aging effect of DPP-4 inhibitors is unknown. This study was performed to determine whether linagliptin, a DPP-4 inhibitor, could protect against premature aging in klotho−/− mice. Methods Klotho−/− mice exhibit multiple phenotypes resembling human premature aging, including extremely shortened life span, cognitive impairment, hippocampal neurodegeneration, hair loss, muscle atrophy, hypoglycemia, etc. To investigate the effect of linagliptin on these aging-related phenotypes, male klotho−/− mice were divided into two groups: (1) control group fed the standard diet, and (2) linagliptin group fed the standard diet containing linagliptin. Treatment with linagliptin was performed for 4 weeks. The effect of linagliptin on the above mentioned aging-related phenotypes was examined. Results Body weight of klotho−/− mice was greater in linagliptin group than in control group (11.1 ± 0.3 vs 9.9 ± 0.3 g; P < 0.01), which was associated with greater gastrocnemius muscle weight (P < 0.01) and greater kidney weight (P < 0.05) in linagliptin group. Thus, linagliptin significantly prevented body weight loss in klotho−/− mice. Survival rate of klotho−/− mice was greater in linagliptin group (93%) compared to control group (67%), although the difference did not reach statistical significance (P = 0.08). None of linagliptin-treated klotho−/− mice had alopecia during the treatment (P < 0.05 vs control klotho−/− mice). Latency of klotho−/− mice in passive avoidance test was larger in linagliptin group than in control group (P < 0.05), indicating the amelioration of cognitive impairment by linagliptin. Cerebral blood flow of klotho−/− mice was larger in linagliptin group than in control group (P < 0.01), being associated with greater cerebral phospho-eNOS levels (P < 0.05) in linagliptin group. Neuronal cell number in hippocampal CA1 region was greater in linagliptin group than in control group (P < 0.05). Linagliptin group had greater cerebral phospho-Akt (P < 0.05) and phospho-CREB (P < 0.05) than control group. Thus, linagliptin ameliorated brain aging in klotho−/− mice. The degree of hypoglycemia in klotho−/− mice was less in linagliptin group than in control group, as estimated by the findings of OGTT. Conclusions Out work provided the evidence that DPP-4 inhibition with linagliptin slowed the progression of premature aging in klotho−/− mice, and provided a novel insight into the potential role of DPP-4 in the mechanism of premature aging