226 research outputs found

    Readministration of gefitinib in a responder after treatment discontinuation due to gefinitib-related interstitial lung disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gefitinib is a new molecular-targeted agent for the treatment of patients with advanced non-small cell lung cancer that fail to respond to conventional chemotherapy. Gefitinib is considered to be well tolerated and less toxic compared with conventional cytotoxic drugs. However, interstitial lung disease (ILD) has been reported as a serious adverse effect. The precise management of a gefitinib responder having severe adverse events remains unknown.</p> <p>Case Presentation</p> <p>We report the case of gefitinib readministration in a patient with lung adenocarcinoma who had once responded but in whom treatment had to be discontinued owing to gefinitib-related ILD. A dramatic response was achieved both at the time of initial treatment (250 mg/day) and at readministration of gefitinib (125 mg/day). The effectiveness of gefitinib therapy in our patient could be explained in part by the presence of an activating mutation of epidermal growth factor receptor (<it>EGFR</it>) gene, L858R in exon 21, which was identified in the primary tumor.</p> <p>Conclusion</p> <p>A reduced dose of gefitinib might be sufficient for patients having tumors with <it>EGFR </it>gene mutations, and that the currently approved dose may be excessively potent in some of these patients, thus resulting in the onset of adverse events.</p

    Role of LKB1 in lung cancer development

    Get PDF
    Three phenotypically related genetic syndromes and their lesions (LKB1, PTEN, and TSC1/2) are identified as frequently altered in lung cancer. LKB1, a kinase inactivated in 30% of lung cancers, is discussed in this review. Loss of LKB1 regulation often coincident with KRAS activation allows for unchecked growth and the metabolic capacity to accommodate the proliferation

    Nodal Stations and Diagnostic Performances of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in Patients with Non-Small Cell Lung Cancer

    Get PDF
    There are no accurate data on the relationship between nodal station and diagnostic performance of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). We evaluated the impact of nodal station and size on the diagnostic performance of EBUS-TBNA in patients with non-small cell lung cancer (NSCLC). Consecutive patients who underwent EBUS-TBNA of mediastinal or hilar lymph nodes for staging or diagnosis of NSCLC were included in this retrospective study. Between May 2009 and February 2010, EBUS-TBNA was performed in 373 mediastinal and hilar lymph nodes in 151 patients. The overall diagnostic sensitivity, specificity, accuracy and negative predictive value (NPV) of EBUS-TBNA were 91.6%, 98.6%, 93.8%, and 84.3%, respectively. NPV of the left side nodal group was significantly lower than those of the other groups (P = 0.047) and sensitivity of the left side nodal group tended to decrease (P = 0.096) compared with those of the other groups. Diagnostic sensitivity and NPV of 4L lymph node were 83.3% and 66.7%, respectively. However, diagnostic performances of EBUS-TBNA did not differ according to nodal size. Bronchoscopists should consider the impact of nodal stations on diagnostic performances of EBUS-TBNA

    Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms

    Get PDF
    More than 50% of transitional cell carcinomas of the bladder show loss of heterozygosity of a region spanning the TSC1 locus at 9q34 and mutations of TSC1 have been identified in 14.5% of tumours. These comprise nonsense mutations, splicing mutations, small deletions and missense mutations. Missense mutations are only rarely found in the germline in TSC disease. Therefore, we have examined six somatic missense mutations found in bladder cancer to determine whether these result in loss of function. We describe loss of function via distinct mechanisms. Five mutations caused mutually exclusive defects at mRNA and protein levels. Of these, two mutations caused pre-mRNA splicing errors that were predicted to result in premature protein truncation and three resulted in markedly reduced stability of exogenous TSC1 protein. Primary tumours with aberrant TSC1 pre-mRNA splicing were confirmed as negative for TSC1 expression by immunohistochemistry. Expression was also significantly reduced in a tumour with a TSC1 missense mutation resulting in diminished protein half-life. A single TSC1 missense mutation identified in a tumour with retained heterozygosity of the TSC1 region on chromosome 9 caused an apparently TSC2- and mTOR-independent localization defect of the mutant protein. We conclude that although TSC1 missense mutations do not play a major role in causation of TSC disease, they represent a significant proportion of somatic loss of function mutations in bladder cancer

    Diagnostic Value of EBUS-TBNA for Lung Cancer with Non-Enlarged Lymph Nodes: A Study in a Tuberculosis-Endemic Country

    Get PDF
    BACKGROUND: In tuberculosis (TB)-endemic areas, contrast-enhanced computed tomography (CT) and positron emission tomography (PET) findings of lung cancer patients with non-enlarged lymph nodes are frequently discrepant. Endobronchial ultrasound-guided transbronchial aspiration (EBUS-TBNA) enables real-time nodal sampling, and thereby improves nodal diagnosis accuracy. This study aimed to compare the accuracy of nodal diagnosis by using EBUS-TBNA, and PET. METHODS: We studied 43 lung cancer patients with CT-defined non-enlarged mediastinal and hilar lymph nodes and examined 78 lymph nodes using EBUS-TBNA. RESULTS: The sensitivity, specificity, positive predictive value, and negative predictive value of EBUS-TBNA were 80.6%, 100%, 100%, and 85.7%, respectively. PET had low specificity (18.9%) and a low positive predictive value (44.4%). The diagnostic accuracy of EBUS-TBNA was higher than that of PET (91% vs. 47.4%; p<0.001). Compared to CT-based nodal assessment, PET yielded a positive diagnostic impact in 36.9% nodes, a negative diagnostic impact in 46.2% nodes, and no diagnostic impact in 16.9% nodes. Patients with lymph nodes showing negative PET diagnostic impact had a high incidence of previous pulmonary TB. Multivariate analysis indicated that detection of hilar nodes on PET was an independent predictor of negative diagnostic impact of PET. CONCLUSION: In a TB-endemic area with a condition of CT-defined non-enlarged lymph node, the negative diagnostic impact of PET limits its clinical usefulness for nodal staging; therefore, EBUS-TBNA, which facilitates direct diagnosis, is preferred

    Role of FBXW7 in the quiescence of gefitinib-resistant lung cancer stem cells in EGFR-mutant non-small cell lung cancer

    Get PDF
    Several recent studies suggest that cancer stem cells (CSCs) are involved in intrinsic resistance to cancer treatment. Maintenance of quiescence is crucial for establishing resistance of CSCs to cancer therapeutics. F-box/WD repeat-containing protein 7 (FBXW7) is a ubiquitin ligase that regulates quiescence by targeting the c-MYC protein for ubiquitination. We previously reported that gefitinib-resistant persisters (GRPs) in EGFR-mutant non-small cell lung cancer (NSCLC) cells highly expressed octamer-binding transcription factor 4 (Oct-4) as well as the lung CSC marker CD133, and they exhibited distinctive features of the CSC phenotype. However, the role of FBXW7 in lung CSCs and their resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors in NSCLC is not fully understood. In this study, we developed GRPs from the two NSCLC cell lines PC9 and HCC827, which express an EGFR exon 19 deletion mutation, by treatment with a high concentration of gefitinib. The GRPs from both PC9 and HCC827 cells expressed high levels of CD133 and FBXW7, but low levels of c-MYC. Cell cycle analysis demonstrated that the majority of GRPs existed in the G0/G1 phase. Knockdown of the FBXW7 gene significantly reduced the cell number of CD133-positive GRPs and reversed the cell population in the G0/G1-phase. We also found that FBXW7 expression in CD133-positive cells was increased and c-MYC expression was decreased in gefitinib-resistant tumors of PC9 cells in mice and in 9 out of 14 tumor specimens from EGFR-mutant NSCLC patients with acquired resistance to gefitinib. These findings suggest that FBXW7 plays a pivotal role in the maintenance of quiescence in gefitinib-resistant lung CSCs in EGFR mutation-positive NSCLC

    Frequent loss of the AXIN1 locus but absence of AXIN1 gene mutations in adenocarcinomas of the gastro-oesophageal junction with nuclear β-catenin expression

    Get PDF
    Up to 60% of gastro-oesophageal junction (GEJ) adenocarcinomas show nuclear β-catenin expression, pointing to activated T-cell factor (TCF)/β-catenin-driven gene transcription. We demonstrate in five human GEJ adenocarcinoma cell lines that nuclear β-catenin expression indeed correlates with enhanced TCF-mediated transcription of a reporter gene. In several tumour types, TCF/β-catenin activation is caused by mutations in either adenomatous polyposis coli (APC), β-catenin exon 3, AXIN1, AXIN2 or β-transducin repeat-containing protein (β-TrCP). In GEJ adenocarcinomas, very few APC and β-catenin mutations have been found. Therefore, the mechanism of Wnt pathway activation remains unclear. In the present study, we did not find AXIN1 gene mutations in 17 GEJ tumours with nuclear β-catenin expression (without β-catenin exon 3 mutations). Six intragenic single nucleotide polymorphisms (SNPs) were identified. One of these, the AXIN1 gene T1942C SNP, has a frequency of 21% but is only very recently described despite numerous AXIN1 gene mutational studies. We provide evidence why this SNP was missed in single strand conformation polymorphism analyses. The AXIN1 gene G2063A variation was previously described as a gene mutation but we demonstrate that this is a polymorphism. With these six SNPs loss of heterozygosity (LOH) was found in 11 of 15 (73%) informative tumours. To investigate a possible AXIN1 gene dosage effect in GEJ tumours expressing nuclear β-catenin, AXIN1 locus LOH was determined in 20 tumours expressing membranous and no nuclear β-catenin. LOH was found in 10 of 13 (77%) informative cases. AXIN1 protein immunohistochemistry revealed cytoplasmic expression in all tumours irrespective of the presence of AXIN1 locus LOH. These data indicate that nuclear β-catenin expression is indicative for activated Wnt signalling and that neither AXIN1 gene mutations nor AXIN1 locus LOH are involved in Wnt pathway activation in GEJ adenocarcinomas
    corecore