2 research outputs found

    Cross-Correlation between UHECR Arrival Distribution and Large-Scale Structure

    Full text link
    We investigate correlation between the arrival directions of ultra-high-energy cosmic rays (UHECRs) and the large-scale structure (LSS) of the Universe by using statistical quantities which can find the angular scale of the correlation. The Infrared Astronomical Satellite Point Source Redshift Survey (IRAS PSCz) catalog of galaxies is adopted for LSS. We find a positive correlation of the highest energy events detected by the Pierre Auger Observatory (PAO) with the IRAS galaxies inside z=0.018z=0.018 within the angular scale of 15\sim 15^{\circ}. This positive correlation observed in the southern sky implies that a significant fraction of the highest energy events comes from nearby extragalactic objects. We also analyze the data of the Akeno Giant Air Shower Array (AGASA) which observed the northern hemisphere, but the obvious signals of positive correlation with the galaxy distribution are not found. Since the exposure of the AGASA is smaller than the PAO, the cross-correlation in the northern sky should be tested using a larger number of events detected in the future. We also discuss the correlation using the all-sky combined data sets of both the PAO and AGASA, and find a significant correlation within 8\sim 8^{\circ}. These angular scales can constrain several models of intergalactic magnetic field. These cross-correlation signals can be well reproduced by a source model in which the distribution of UHECR sources is related to the IRAS galaxies.Comment: 21 pages,7 figure

    Small Scale Anisotropy Predictions for the Auger Observatory

    Full text link
    We study the small scale anisotropy signal expected at the Pierre Auger Observatory in the next 1, 5, 10, and 15 years of operation, from sources of ultra-high energy (UHE) protons. We numerically propagate UHE protons over cosmological distances using an injection spectrum and normalization that fits current data up to \sim 10^{20}\eV. We characterize possible sources of ultra-high energy cosmic rays (UHECRs) by their mean density in the local Universe, ρˉ=10r\bar{\rho} = 10^{-r} Mpc3^{-3}, with rr between 3 and 6. These densities span a wide range of extragalactic sites for UHECR sources, from common to rare galaxies or even clusters of galaxies. We simulate 100 realizations for each model and calculate the two point correlation function for events with energies above 4 \times 10^{19}\eV and above 10^{20}\eV, as specialized to the case of the Auger telescope. We find that for r\ga 4, Auger should be able to detect small scale anisotropies in the near future. Distinguishing between different source densities based on cosmic ray data alone will be more challenging than detecting a departure from isotropy and is likely to require larger statistics of events. Combining the angular distribution studies with the spectral shape around the GZK feature will also help distinguish between different source scenarios.Comment: 15 pages, 6 figures, 6 tables, submitted to JCA
    corecore