42 research outputs found

    Coevolution between a Family of Parasite Virulence Effectors and a Class of LINE-1 Retrotransposons

    Get PDF
    Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVRk1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVRk1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome

    Saliva proteins of vector Culicoides modify structure and infectivity of bluetongue virus particles.

    No full text
    Bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) are related orbiviruses, transmitted between their ruminant hosts primarily by certain haematophagous midge vectors (Culicoides spp.). The larger of the BTV outer-capsid proteins, 'VP2', can be cleaved by proteases (including trypsin or chymotrypsin), forming infectious subviral particles (ISVP) which have enhanced infectivity for adult Culicoides, or KC cells (a cell-line derived from C. sonorensis). We demonstrate that VP2 present on purified virus particles from 3 different BTV strains can also be cleaved by treatment with saliva from adult Culicoides. The saliva proteins from C. sonorensis (a competent BTV vector), cleaved BTV-VP2 more efficiently than those from C. nubeculosus (a less competent/non-vector species). Electrophoresis and mass spectrometry identified a trypsin-like protease in C. sonorensis saliva, which was significantly reduced or absent from C. nubeculosus saliva. Incubating purified BTV-1 with C. sonorensis saliva proteins also increased their infectivity for KC cells ∼10 fold, while infectivity for BHK cells was reduced by 2-6 fold. Treatment of an 'eastern' strain of EHDV-2 with saliva proteins of either C. sonorensis or C. nubeculosus cleaved VP2, but a 'western' strain of EHDV-2 remained unmodified. These results indicate that temperature, strain of virus and protein composition of Culicoides saliva (particularly its protease content which is dependent upon vector species), can all play a significant role in the efficiency of VP2 cleavage, influencing virus infectivity. Saliva of several other arthropod species has previously been shown to increase transmission, infectivity and virulence of certain arboviruses, by modulating and/or suppressing the mammalian immune response. The findings presented here, however, demonstrate a novel mechanism by which proteases in Culicoides saliva can also directly modify the orbivirus particle structure, leading to increased infectivity specifically for Culicoides cells and, in turn, efficiency of transmission to the insect vector

    Viraemia and clinical disease in Dorset Poll sheep following vaccination with live attenuated bluetongue virus vaccines serotypes 16 and 4.

    No full text
    The spread of bluetongue virus (BTV) is most successfully controlled by vaccination of susceptible ruminant populations. Currently two different types of BTV vaccines are used for this purpose; inactivated, mostly monovalent vaccine formulations and modified live virus vaccines (MLVs). Clinical signs and viraemia in Dorset Poll sheep vaccinated with BTV-4 and BTV-16 MLVs or inoculated with homogenates of midges (C. sonorensis and C. nubeculosus) previously infected with BTV-4 MLV are presented. All sheep vaccinated with the two MLVs mounted an infectious viraemia lasting for a minimum of 9 up to 23 days post vaccination and developed a range of clinical signs associated with BTV infection. Peak viraemia titres recorded in individual sheep ranged from 3.5 to 6.83 log(10)TCID(50)/ml indicating a high potential for infection of vector insects and onward transmission. The implications of these results are discussed with reference to the current outbreaks of BTV occurring in northern Europe and in relation to the future development of vaccines for this virus

    Involvement of the skin during bluetongue virus infection and replication in the ruminant host.

    No full text
    Bluetongue virus (BTV) is a double stranded (ds) RNA virus (genus Orbivirus; family Reoviridae), which is considered capable of infecting all species of domestic and wild ruminants, although clinical signs are seen mostly in sheep. BTV is arthropod-borne ("arbovirus") and able to productively infect and replicate in many different cell types of both insects and mammalian hosts. Although the organ and cellular tropism of BTV in ruminants has been the subject of several studies, many aspects of its pathogenesis are still poorly understood, partly because of inherent problems in distinguishing between "virus replication" and "virus presence".BTV replication and organ tropism were studied in a wide range of infected sheep tissues, by immuno-fluorescence-labeling of non-structural or structural proteins (NS2 or VP7 and core proteins, respectively) using confocal microscopy to distinguish between virus presence and replication. These results are compared to gross and microscopic pathological findings in selected organs from infected sheep. Replication was demonstrated in two major cell types: vascular endothelial cells, and agranular leukocytes which morphologically resemble lymphocytes, monocytes/macrophages and/or dendritic cells. Two organs (the skin and tonsils) were shown to support relatively high levels of BTV replication, although they have not previously been proposed as important replication sites during BTV infection. The high level of BTV replication in the skin is thought to be of major significance for the pathogenesis and transmission of BTV (via biting insects) and a refinement of our current model of BTV pathogenesis is discussed
    corecore