14 research outputs found

    TGF-Β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia

    Get PDF
    金沢大学がん研究所がん幹細胞研究センターChronic myeloid leukaemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL, a constitutively active tyrosine kinase. It is widely believed that BCR-ABL activates Akt signalling that suppresses the forkhead O transcription factors (FOXO), supporting the proliferation or inhibiting the apoptosis of CML cells. Although the use of the tyrosine kinase inhibitor imatinib is a breakthrough for CML therapy, imatinib does not deplete the leukaemia-initiating cells (LICs) that drive the recurrence of CML. Here, using a syngeneic transplantation system and a CML-like myeloproliferative disease mouse model, we show that Foxo3a has an essential role in the maintenance of CML LICs. We find that cells with nuclear localization of Foxo3a and decreased Akt phosphorylation are enriched in the LIC population. Serial transplantation of LICs generated from Foxo3a+/+ and Foxo3a-/- mice shows that the ability of LICs to cause disease is significantly decreased by Foxo3a deficiency. Furthermore, we find that TGF-Β is a critical regulator of Akt activation in LICs and controls Foxo3a localization. A combination of TGF-Β inhibition, Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo. Furthermore, the treatment of human CML LICs with a TGF-Β inhibitor impaired their colony-forming ability in vitro. Our results demonstrate a critical role for the TGF-Β-FOXO pathway in the maintenance of LICs, and strengthen our understanding of the mechanisms that specifically maintain CML LICs in vivo. © 2010 Macmillan Publishers Limited. All rights reserved

    Hepatocyte-specific damage in acute toxicity of sodium ferrous citrate: Presentation of a human autopsy case and experimental results in mice

    No full text
    Acute iron overload is known to exert deleterious effects in the liver, but detailed pathology has yet to be documented. Here, we report pathological findings in an autopsy case of acute iron toxicity and validation of the findings in mouse experiments. In a 39-year-old woman who intentionally ingested a large amount of sodium ferrous citrate (equivalent to 7.5 g of iron), severe disturbance of consciousness and fulminant hepatic failure rapidly developed. Liver failure was refractory to treatment and the patient died on Day 13. Autopsy revealed almost complete loss of hepatocytes, while bile ducts were spared. To examine the detailed pathologic processes induced by excessive iron, mice were orally administered equivalent doses of ferrous citrate. Plasma aminotransferase levels markedly increased after 6 h, which was preceded by increased plasma iron levels. Hepatocytes were selectively damaged, with more prominent damage in the periportal area. Phosphorylated c-Jun was detected in hepatocyte nuclei after 3 h, which was followed by the appearance of γ-H2AX expression. Hepatocyte injury in mice was associated with the expression of Myc and p53 after 12 and 24 h, respectively. Even at lethal doses, the bile ducts were morphologically intact and fully viable. Our findings indicate that acute iron overload induces hepatocyte-specific liver injury, most likely through hydroxyl radical-mediated DNA damage and subsequent stress responses

    mTORC1 is essential for leukemia propagation but not stem cell self-renewal

    No full text
    Although dysregulation of mTOR complex 1 (mTORC1) promotes leukemogenesis, how mTORC1 affects established leukemia is unclear. We investigated the role of mTORC1 in mouse hematopoiesis using a mouse model of conditional deletion of Raptor, an essential component of mTORC1. Raptor deficiency impaired granulocyte and B cell development but did not alter survival or proliferation of hematopoietic progenitor cells. In a mouse model of acute myeloid leukemia (AML), Raptor deficiency significantly suppressed leukemia progression by causing apoptosis of differentiated, but not undifferentiated, leukemia cells. mTORC1 did not control cell cycle or cell growth in undifferentiated AML cells in vivo. Transplantation of Raptor-deficient undifferentiated AML cells in a limiting dilution revealed that mTORC1 is essential for leukemia initiation. Strikingly, a subset of AML cells with undifferentiated phenotypes survived long-term in the absence of mTORC1 activity. We further demonstrated that the reactivation of mTORC1 in those cells restored their leukemia-initiating capacity. Thus, AML cells lacking mTORC1 activity can self-renew as AML stem cells. Our findings provide mechanistic insight into how residual tumor cells circumvent anticancer therapies and drive tumor recurrence

    Critical role of Myc activation in mouse hepatocarcinogenesis induced by the activation of AKT and RAS pathways

    Get PDF
    http://creativecommons.org/licenses/by-nc-sa/4.0/MYC activation at modest levels has been frequently found in hepatocellular carcinoma. However, its significance in hepatocarcinogenesis has remained obscure. Here we examined the role of Myc activation in mouse liver tumours induced by hepatocytic expression of myristoylated AKT (AKT) and/or mutant HRASV12 (HRAS) via transposon-mediated gene integration. AKT or HRAS alone required 5 months to induce liver tumours, whereas their combination generated hepatocellular carcinoma within 8 weeks. Co-introduction of AKT and HRAS induced lipid-laden preneoplastic cells that grew into nodules composed of tumour cells with or without intracytoplasmic lipid, with the latter being more proliferative and associated with spontaneous Myc expression. AKT/HRAS-induced tumorigenesis was almost completely abolished when MadMyc, a competitive Myc inhibitor, was expressed simultaneously. The Tet-On induction of MadMyc in preneoplastic cells significantly inhibited the progression of AKT/HRAS-induced tumours; its induction in transformed cells suppressed their proliferative activity with alterations in lipid metabolism and protein translation. Transposon-mediated Myc overexpression facilitated tumorigenesis by AKT or HRAS, and when it was co-introduced with AKT and HRAS, diffusely infiltrating tumours without lipid accumulation developed as early as 2 weeks. Examination of the dose-responses of Myc in the enhancement of AKT/HRAS-induced tumorigenesis revealed that a reduction to one-third retained enhancing effect but three-times greater introduction damped the process with increased apoptosis. Myc overexpression suppressed the mRNA expression of proteins involved in the synthesis of fatty acids, and when combined with HRAS introduction, it also suppressed the mRNA expression of proteins involved in their degradation. Finally, the MYC-positive human hepatocellular carcinoma was characterized by the cytoplasm devoid of lipid accumulation, prominent nucleoli and a higher proliferative activity. Our results demonstrate that in hepatocarcinogenesis induced by both activated AKT and HRAS, activation of endogenous Myc is an enhancing factor and adequate levels of Myc deregulation further facilitate the process with alterations in cellular metabolism
    corecore