39 research outputs found

    Liver regeneration after portal vein embolization: comparison between absolute ethanol and N-butyl-cyanoacrylate in an in vivo rat model

    Get PDF
    PURPOSETo compare the effects of absolute ethanol (ethanol) and N-butyl-cyanoacrylate (NBCA) on non-embolized liver lobe regeneration in a rat model.METHODSTwenty-seven Sprague–Dawley rats underwent portal vein embolization (PVE) using ethanol:lipiodol, 1:1 (ethanol group, n = 11, 40.74%), NBCA:lipiodol, 1:1 (NBCA group, n = 11, 40.74%), or sham treatment (sham group, n = 5, 18.52%). The non-embolized and embolized lobe-to-whole liver weight ratios 14 days after PVE were compared among the groups (n = 5, 18.52%). The expressions of CD68 and Ki-67 and embolized-lobe necrotic area percentages one day after PVE were compared between the ethanol (n = 3, 11.11%) and NBCA (n = 3, 11.11%) groups.RESULTSThe non-embolized lobe-to-whole liver weight ratio after PVE was significantly higher in the NBCA group (n = 5, 33.33%) than in the ethanol group (n = 5, 33.33%) (84.28% ± 1.53% vs. 76.88% ± 4.12%, P = 0.029). The embolized lobe-to-whole liver weight ratio after PVE was significantly lower in the NBCA group than in the ethanol group (15.72% ± 1.53% vs. 23.12% ± 4.12%, P = 0.029). The proportions of CD68- and Ki-67-positive cells in the non-embolized lobe after PVE were significantly higher in the NBCA group (n = 30, 50%) than in the ethanol group (n = 30, 50%) [60 (48–79) vs. 55 (37–70), P = 0.003; 1 (0–2) vs. 1 (0–2), P = 0.004]. The embolized-lobe necrotic area percentage after PVE was significantly larger in the NBCA group (n = 30, 50%) than in the ethanol group (n = 30, 50%) [29.46 (12.56–83.90%) vs. 16.34 (3.22–32.0%), P < 0.001].CONCLUSIONPVE with NBCA induced a larger necrotic area in the embolized lobe and promoted greater non-embolized liver lobe regeneration compared with PVE with ethanol

    How Compatible Are Immune Checkpoint Inhibitors and Thermal Ablation for Liver Metastases?

    No full text
    Cancer immunotherapy, which reactivates the weakened immune cells of cancer patients, has achieved great success, and several immune checkpoint inhibitors (ICIs) are now available in clinical practice. Despite promising clinical outcomes, favorable responses are only observed in a fraction of patients, and resistance mechanisms, including the absence of tumor antigens, have been reported. Thermal ablation involves the induction of irreversible damage to cancer cells by localized heat and may result in the release of tumor antigens. The combination of immunotherapy and thermal ablation is an emerging therapeutic option with enhanced efficacy. Since thermal ablation-induced inflammation and increases in tumor antigens have been suggested to promote the cancer-immunity cycle, the combination of immuno-oncology (IO) therapy and thermal ablation may be mutually beneficial. In preclinical and clinical studies, the combination of ICI and thermal ablation significantly inhibited tumor growth, and synergistic antitumor effects appeared to prolong the survival of patients with secondary liver cancer. However, evidence for the efficacy of ICI monotherapy combined with thermal ablation is currently insufficient. Therefore, the clinical feasibility of immune response activation by ICI monotherapy combined with thermal ablation may be limited, and thermal ablation may be more compatible with dual ICIs (the IO&ndash;IO combination) to induce strong immune responses

    Reversible Electroporation–Mediated Liposomal Doxorubicin Delivery to Tumors Can Be Monitored With 89Zr-Labeled Reporter Nanoparticles

    No full text
    Reversible electroporation (RE) can facilitate nanoparticle delivery to tumors through direct transfection and from changes in vascular permeability. We investigated a radiolabeled liposomal nanoparticle (89Zr-NRep) for monitoring RE-mediated liposomal doxorubicin (DOX) delivery in mouse tumors. Intravenously delivered 89Zr-NRep allowed positron emission tomography imaging of electroporation-mediated nanoparticle uptake. The relative order of 89Zr-NRep injection and electroporation did not result in significantly different overall tumor uptake, suggesting direct transfection and vascular permeability can independently mediate deposition of 89Zr-NRep in tumors. 89Zr-NRep and DOX uptake correlated well in both electroporated and control tumors at all experimental time points. Electroporation accelerated 89Zr-NRep and DOX deposition into tumors and increased DOX dosing. Reversible electroporation–related vascular effects seem to play an important role in nanoparticle delivery to tumors and drug uptake can be quantified with 89Zr-NRep

    Reversible Electroporation–Mediated Liposomal Doxorubicin Delivery to Tumors Can Be Monitored With 89

    No full text
    Reversible electroporation (RE) can facilitate nanoparticle delivery to tumors through direct transfection and from changes in vascular permeability. We investigated a radiolabeled liposomal nanoparticle (89Zr-NRep) for monitoring RE-mediated liposomal doxorubicin (DOX) delivery in mouse tumors. Intravenously delivered 89Zr-NRep allowed positron emission tomography imaging of electroporation-mediated nanoparticle uptake. The relative order of 89Zr-NRep injection and electroporation did not result in significantly different overall tumor uptake, suggesting direct transfection and vascular permeability can independently mediate deposition of 89Zr-NRep in tumors. 89Zr-NRep and DOX uptake correlated well in both electroporated and control tumors at all experimental time points. Electroporation accelerated 89Zr-NRep and DOX deposition into tumors and increased DOX dosing. Reversible electroporation–related vascular effects seem to play an important role in nanoparticle delivery to tumors and drug uptake can be quantified with 89Zr-NRep

    11C-Choline-Avid but 18F-FDG-Nonavid Prostate Cancer with Lymph Node Metastases on Positron Emission Tomography

    No full text
    Choline is a new positron emission tomography (PET) tracer useful for detection of prostate cancer and metastatic lesions. We report a 70-year-old man with prostate cancer and multiple abdominal, pelvic, and inguinal node metastases. PET scans demonstrated accumulation of 11C-choline in the primary tumor and lymph node metastases but no accumulation of 18F-FDG. Choline PET/computed tomography may be useful for diagnosis of advanced prostate cancer with suspected metastatic lesions and treatment planning
    corecore