5,070 research outputs found

    Borylstannylation of alkynes with inverse regioselectivity: copper-catalyzed three-component coupling using a masked diboron

    Get PDF
    A variety of terminal alkynes are facilely convertible into cis-boryl(stannyl)alkenes with inverse regioselectivity to those of the previous borylstannylation by the copper-catalyzed three-component reaction using a masked diboron. The synthetic utility of the resulting boryl(stannyl)alkenes has been demonstrated by chemoselective coupling reactions

    Copper-catalyzed α-selective hydrostannylation of alkynes for the synthesis of branched alkenylstannanes

    Get PDF
    A variety of branched alkenylstannanes can directly be synthesized with excellent α-selectivity by the copper-catalyzed hydrostannylation using a distannane or a silylstannane, irrespective of the electronic and steric characteristics of terminal alkynes employed. Synthetic utility of the resulting branched alkenylstannane has been demonstrated by the total synthesis of bexarotene

    Inverse regioselectivity in the silylstannylation of alkynes and allenes: copper-catalyzed three-component coupling with a silylborane and a tin alkoxide

    Get PDF
    Silylstannylation of alkynes and allenes has been found to proceed by three-component coupling using a silylborane and a tin alkoxide in the presence of a Cu(I) catalyst. The regioselectivities are completely inverse to those of the conventional silylstannylation under palladium catalysis

    Numerical investigations of mechanical stress caused in dendrite by melt convection and gravity

    Get PDF
    In order to investigate the effects of stress around dendrite neck cased by the convection and gravity on the dendrite fragmentation, the novel numerical model, where phase-field method, Navier-Stokes equations and finite element method are continuously and independently employed, has been developed. By applying the model to the dendritic solidification of Al-Si alloy, the maximum stress variations by melt convection and gravity with dendrite growth were evaluated

    Spatial Current Patterns, Dephasing and Current Imaging in Graphene Nanoribbons

    Full text link
    Using the non-equilibrium Keldysh Green's function formalism, we investigate the local, non-equilibrium charge transport in graphene nanoribbons (GNRs). In particular, we demonstrate that the spatial current patterns associated with discrete transmission resonances sensitively depend on the GNRs' geometry, size, and aspect ratio, the location and number of leads, and the presence of dephasing. We identify a relation between the spatial form of the current patterns, and the number of degenerate energy states participating in the charge transport. Furthermore, we demonstrate a principle of superposition for the conductance and spatial current patterns in multiple-lead configurations. We demonstrate that scanning tunneling microscopy (STM) can be employed to image spatial current paths in GNR with atomic resolution, providing important insight into the form of local charge transport. Finally, we investigate the effects of dephasing on the spatial current patterns, and show that with decreasing dephasing time, the current patterns evolve smoothly from those of a ballistic quantum network to those of classical resistor network.Comment: 25 pages, 12 figure

    Brueckner Rearrangement Effects in Λ5^5_\LambdaHe and ΛΛ6^6_{\Lambda\Lambda}He

    Full text link
    Rearrangement effects in light hypernuclei are investigated in the framework of the Brueckner theory. We can estimate without detailed numerical calculations that the energy of the α\alpha-core is reduced by more than 2.5 MeV when the Λ\Lambda adheres to 4^4He to form Λ5^5_\LambdaHe. Similar assessment of rearrangement contributions is essential to deduce the strength of ΛΛ\Lambda\Lambda interaction from experimentally observed ΔBΛΛ\Delta B_{\Lambda\Lambda}. The recently observed experimental value of ∼\sim 1 MeV for the ΔBΛΛ\Delta B_{\Lambda\Lambda} of \hll suggests that the matrix element of in \hll is around -2 MeV.Comment: 7 pages, to appear in Phys. Rev.

    No association between the sigma receptor type 1 gene and schizophrenia: results of analysis and meta-analysis of case-control studies

    Get PDF
    BACKGROUND: Several lines of evidence have supported possible roles of the sigma receptors in the etiology of schizophrenia and mechanisms of antipsychotic efficacy. An association study provided genetic evidence that the sigma receptor type 1 gene (SIGMAR1) was a possible susceptibility factor for schizophrenia, however, it was not replicated by a subsequent study. It is necessary to evaluate further the possibility that the SIGMAR1 gene is associated with susceptibility to schizophrenia. METHODS: A case-control association study between two polymorphisms of the SIGMAR1 gene, G-241T/C-240T and Gln2Pro, and schizophrenia in Japanese population, and meta-analysis including present and previous studies. RESULTS: There was no significant association of any allele or genotype of the polymorphisms with schizophrenia. Neither significant association was observed with hebephrenic or paranoid subtype of schizophrenia. Furthermore, a meta-analysis including the present and previous studies comprising 779 controls and 636 schizophrenics also revealed no significant association between the SIGMAR1 gene and schizophrenia. CONCLUSION: In view of this evidence, it is likely that the SIGMAR1 gene does not confer susceptibility to schizophrenia
    • …
    corecore